/*** * ASM: a very small and fast Java bytecode manipulation framework * Copyright (c) 2000-2007 INRIA, France Telecom * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ package org.ow2.asmdex.lowLevelUtils; import java.util.Arrays; /** * A dynamically extensible vector of bytes. This class is roughly equivalent to * a DataOutputStream on top of a ByteArrayOutputStream, but is more efficient. * * NOTE : * - putMUTF8() uses the same algorithm as "modified" UTF8 from Java (and ASM), with a removed the size at the * beginning and a 0 at the end. * * @author Eric Bruneton * @author Julien Névo (change to little-endian, addition of putULeb128 and * putULeb128p1 methods, possibility to write at random access, addPadding, * putSleb128, UTF8 to MUTF8). */ public class ByteVector { /** * The content of this vector. */ byte[] data; /** * Returns the data actually written in this vector. * @return the data actually written in this vector. */ public byte[] getData() { if (data == null) { return null; } if (length == data.length) { return data; } return Arrays.copyOf(data, length); } /** * Returns the whole buffer, which contains the data but also the blank bytes that * (probably) follows. Use this to get the data without wanting to copy them, and * use getLength() to treat only what is necessary. * @return the whole buffer, which contains the data but also the blank bytes that * (probably) follows. */ public byte[] getBuffer() { return data; } /** * Actual number of bytes in this vector. */ int length; /** * Returns the number of bytes this vector contains. * @return the number of bytes this vector contains. */ public int getLength() { return length; } /** * Constructs a new {@link ByteVector ByteVector} with a default initial * size. */ public ByteVector() { data = new byte[64]; } /** * Constructs a new {@link ByteVector ByteVector} with the given initial * size. * * @param initialSize the initial size of the byte vector to be constructed. */ public ByteVector(final int initialSize) { data = new byte[initialSize]; } /** * Constructs a new {@link ByteVector ByteVector} with the given byte array. * The byte array is <i>NOT</i> copied. * @param bytes the byte array. */ public ByteVector(byte[] bytes) { data = bytes; length = bytes.length; } /** * Puts a byte into this byte vector. The byte vector is automatically * enlarged if necessary. * * @param b a byte. * @return this byte vector. */ public ByteVector putByte(final int b) { int length = this.length; if (length + 1 > data.length) { enlarge(1); } data[length++] = (byte) b; this.length = length; return this; } /** * Puts a byte into this byte vector at the given position. * The byte vector is <i>not</i> enlarged if necessary. * @param b a byte. * @param position position in byte in the byte vector. * @return this byte vector. */ public ByteVector putByte(final int b, final int position) { data[position] = (byte) b; return this; } /** * Puts a Byte Vector at the end of this byte vector. * The byte vector is automatically enlarged if necessary. * @param bv the byte vector. * @return this byte vector. */ public ByteVector putByteVector(final ByteVector bv) { putByteArray(bv.data, 0, bv.length); return this; } /** * Puts a Byte Vector into this byte vector at the given position. * The byte vector is <i>not</i> enlarged if necessary. * @param bv the byte vector. * @param position position in byte in the byte vector. * @return this byte vector. */ public ByteVector putByteVector(final ByteVector bv, final int position) { byte[] b = bv.getData(); putByteArray(b, position); return this; } /** * Puts two bytes into this byte vector. The byte vector is automatically * enlarged if necessary. * * @param b1 a byte. * @param b2 another byte. * @return this byte vector. */ ByteVector put11(final int b1, final int b2) { int length = this.length; if (length + 2 > data.length) { enlarge(2); } byte[] data = this.data; data[length++] = (byte) b1; data[length++] = (byte) b2; this.length = length; return this; } /** * Puts a short into this byte vector. The byte vector is automatically * enlarged if necessary. * * @param s a short. * @return this byte vector. */ public ByteVector putShort(final int s) { int length = this.length; if (length + 2 > data.length) { enlarge(2); } byte[] data = this.data; data[length++] = (byte) s; // Swapped. data[length++] = (byte) (s >>> 8); // Swapped. this.length = length; return this; } /** * The byte vector is <i>not</i> enlarged if necessary. * @param s an int. * @param position position in byte in the byte vector. * @return this byte vector. */ public ByteVector putShort(final int s, int position) { byte[] data = this.data; data[position++] = (byte) s; // Swapped. data[position++] = (byte) (s >>> 8); // Swapped. return this; } /** * Puts a ULeb128 number into this byte vector. The byte vector is automatically * enlarged if necessary. * @param s an int. * @return this byte vector. */ public ByteVector putUleb128(final int s) { int nb1 = s & 0x7f; int nb2 = 0, nb3 = 0, nb4 = 0, nb5 = 0; int nbLength = 1; if (s > 0x7f) { nbLength++; nb1 = nb1 + 0x80; // Adds the highest bit. nb2 = ((s >>> 7) & 0x7f); if (s > (0x3fff)) { nbLength++; nb2 = nb2 + 0x80; nb3 = ((s >>> 14) & 0x7f); if (s > (0x1fffff)) { nbLength++; nb3 = nb3 + 0x80; nb4 = ((s >>> 21) & 0x7f); if (s > (0xfffffff)) { nbLength++; nb4 = nb4 & 0x7f; } nb5 = (s >>> 28) + 0x80; } } } int length = this.length; if (length + nbLength > data.length) { enlarge(nbLength); } byte[] data = this.data; data[length++] = (byte)nb1; if (nbLength > 1) { data[length++] = (byte)nb2; } if (nbLength > 2) { data[length++] = (byte)nb3; } if (nbLength > 3) { data[length++] = (byte)nb4; } if (nbLength > 4) { data[length++] = (byte)nb5; } this.length = length; return this; } /** * Puts a ULeb128p1 number into this byte vector. The byte vector is automatically * enlarged if necessary. * @param s an int. * @return this byte vector. */ public ByteVector putUleb128p1(final int s) { return putUleb128(s + 1); } /** * Puts a SLeb128 number into this byte vector. The byte vector is automatically * enlarged if necessary. * @param s an int. * @return this byte vector. */ public ByteVector putSleb128(int s) { int nb1 = 0, nb2 = 0, nb3 = 0, nb4 = 0, nb5 = 0; int remaining = s >> 7; int nbLength = 0; int end = ((s & Integer.MIN_VALUE) == 0) ? 0 : -1; boolean mustContinue = (remaining != end) || ((remaining & 1) != ((s >> 6) & 1)); nb1 = (s & 0x7f) | (mustContinue ? 0x80 : 0); s = remaining; remaining = remaining >> 7; nbLength++; if (mustContinue) { mustContinue = (remaining != end) || ((remaining & 1) != ((s >> 6) & 1)); nb2 = (s & 0x7f) | (mustContinue ? 0x80 : 0); s = remaining; remaining = remaining >> 7; nbLength++; if (mustContinue) { mustContinue = (remaining != end) || ((remaining & 1) != ((s >> 6) & 1)); nb3 = (s & 0x7f) | (mustContinue ? 0x80 : 0); s = remaining; remaining = remaining >> 7; nbLength++; if (mustContinue) { mustContinue = (remaining != end) || ((remaining & 1) != ((s >> 6) & 1)); nb4 = (s & 0x7f) | (mustContinue ? 0x80 : 0); s = remaining; remaining = remaining >> 7; nbLength++; } if (mustContinue) { nb5 = (s & 0x7f) | (mustContinue ? 0x80 : 0); nbLength++; } } } int length = this.length; if (length + nbLength > data.length) { enlarge(nbLength); } byte[] data = this.data; data[length++] = (byte)nb1; if (nbLength > 1) { data[length++] = (byte)nb2; } if (nbLength > 2) { data[length++] = (byte)nb3; } if (nbLength > 3) { data[length++] = (byte)nb4; } if (nbLength > 4) { data[length++] = (byte)nb5; } this.length = length; return this; } /** * Puts a byte and a short into this byte vector. The byte vector is * automatically enlarged if necessary. * * @param b a byte. * @param s a short. * @return this byte vector. */ ByteVector put12(final int b, final int s) { int length = this.length; if (length + 3 > data.length) { enlarge(3); } byte[] data = this.data; data[length++] = (byte) b; data[length++] = (byte) s; // Swapped. data[length++] = (byte) (s >>> 8); // Swapped. this.length = length; return this; } /** * Puts an int into this byte vector. The byte vector is automatically * enlarged if necessary. * * @param i an int. * @return this byte vector. */ public ByteVector putInt(final int i) { int length = this.length; if (length + 4 > data.length) { enlarge(4); } byte[] data = this.data; data[length++] = (byte) i; // Swapped. data[length++] = (byte) (i >>> 8); data[length++] = (byte) (i >>> 16); data[length++] = (byte) (i >>> 24); this.length = length; return this; } /** * Puts an int into this byte vector at the given position. * The byte vector is <i>not</i> enlarged if necessary. * @param i an int. * @param position position in byte in the byte vector. * @return this byte vector. */ public ByteVector putInt(final int i, int position) { byte[] data = this.data; data[position++] = (byte) i; // Swapped. data[position++] = (byte) (i >>> 8); data[position++] = (byte) (i >>> 16); data[position++] = (byte) (i >>> 24); return this; } /** * Puts a long into this byte vector. The byte vector is automatically * enlarged if necessary. * * @param l a long. * @return this byte vector. */ public ByteVector putLong(final long l) { int length = this.length; if (length + 8 > data.length) { enlarge(8); } byte[] data = this.data; int i = (int) l; data[length++] = (byte) i; data[length++] = (byte) (i >>> 8); data[length++] = (byte) (i >>> 16); data[length++] = (byte) (i >>> 24); i = (int) (l >>> 32); data[length++] = (byte) i; data[length++] = (byte) (i >>> 8); data[length++] = (byte) (i >>> 16); data[length++] = (byte) (i >>> 24); this.length = length; return this; } /** * Puts an UTF8 string into this byte vector. The byte vector is * automatically enlarged if necessary. * * @param s a String. * @return this byte vector. */ public ByteVector putUTF8(final String s) { int charLength = s.length(); int len = length; if (len + 2 + charLength > data.length) { enlarge(2 + charLength); } byte[] data = this.data; // optimistic algorithm: instead of computing the byte length and then // serializing the string (which requires two loops), we assume the byte // length is equal to char length (which is the most frequent case), and // we start serializing the string right away. During the serialization, // if we find that this assumption is wrong, we continue with the // general method. data[len++] = (byte) (charLength >>> 8); data[len++] = (byte) charLength; for (int i = 0; i < charLength; ++i) { char c = s.charAt(i); if (c >= '\001' && c <= '\177') { data[len++] = (byte) c; } else { int byteLength = i; for (int j = i; j < charLength; ++j) { c = s.charAt(j); if (c >= '\001' && c <= '\177') { byteLength++; } else if (c > '\u07FF') { byteLength += 3; } else { byteLength += 2; } } data[length] = (byte) (byteLength >>> 8); data[length + 1] = (byte) byteLength; if (length + 2 + byteLength > data.length) { length = len; enlarge(2 + byteLength); data = this.data; } for (int j = i; j < charLength; ++j) { c = s.charAt(j); if (c >= '\001' && c <= '\177') { data[len++] = (byte) c; } else if (c > '\u07FF') { data[len++] = (byte) (0xE0 | c >> 12 & 0xF); data[len++] = (byte) (0x80 | c >> 6 & 0x3F); data[len++] = (byte) (0x80 | c & 0x3F); } else { data[len++] = (byte) (0xC0 | c >> 6 & 0x1F); data[len++] = (byte) (0x80 | c & 0x3F); } } break; } } length = len; return this; } /** * Puts a MUTF8 string into this byte vector. The byte vector is * automatically enlarged if necessary. * * @param s a String. * @return this byte vector. */ public ByteVector putMUTF8(final String s) { int charLength = s.length(); int len = length; // + 1 because we don't code the size like UTF8, but encode a 0 at the end. if (len + 1 + charLength > data.length) { enlarge(1 + charLength); } byte[] data = this.data; // optimistic algorithm: instead of computing the byte length and then // serializing the string (which requires two loops), we assume the byte // length is equal to char length (which is the most frequent case), and // we start serializing the string right away. During the serialization, // if we find that this assumption is wrong, we continue with the // general method. for (int i = 0; i < charLength; ++i) { char c = s.charAt(i); if (c >= '\001' && c <= '\177') { data[len++] = (byte) c; } else { int byteLength = i; for (int j = i; j < charLength; ++j) { c = s.charAt(j); if (c >= '\001' && c <= '\177') { byteLength++; } else if (c > '\u07FF') { byteLength += 3; } else { byteLength += 2; } } if (length + 1 + byteLength > data.length) { length = len; enlarge(1 + byteLength); data = this.data; } for (int j = i; j < charLength; ++j) { c = s.charAt(j); if (c >= '\001' && c <= '\177') { data[len++] = (byte) c; } else if (c > '\u07FF') { data[len++] = (byte) (0xE0 | c >> 12 & 0xF); data[len++] = (byte) (0x80 | c >> 6 & 0x3F); data[len++] = (byte) (0x80 | c & 0x3F); } else { data[len++] = (byte) (0xC0 | c >> 6 & 0x1F); data[len++] = (byte) (0x80 | c & 0x3F); } } break; } } data[len++] = 0; length = len; return this; } /** * Puts an array of bytes into this byte vector. The byte vector is * automatically enlarged if necessary. * * @param b an array of bytes. May be <tt>null</tt> to put <tt>len</tt> * null bytes into this byte vector. * @param off index of the fist byte of b that must be copied. * @param len number of bytes of b that must be copied. * @return this byte vector. */ public ByteVector putByteArray(final byte[] b, final int off, final int len) { if (length + len > data.length) { enlarge(len); } if (b != null) { System.arraycopy(b, off, data, length, len); } length += len; return this; } /** * Puts an array of bytes into this byte vector. The byte vector is * automatically enlarged if necessary. * * @param b an array of bytes. * @return this byte vector. */ public ByteVector putByteArray(final byte[] b) { return putByteArray(b, 0, b.length); } /** * Puts an array of bytes into this byte vector, at the given position. * The byte vector is <i>not</i> enlarged if necessary. * @param b an array of bytes. * @param position position in bytes in the vector. * @return this byte vector. */ public ByteVector putByteArray(final byte[] b, final int position) { if (b != null) { System.arraycopy(b, 0, data, position, b.length); } return this; } /** * Enlarge this byte vector so that it can receive n more bytes. * * @param size number of additional bytes that this byte vector should be * able to receive. */ private void enlarge(final int size) { int length1 = 2 * data.length; int length2 = length + size; byte[] newData = new byte[length1 > length2 ? length1 : length2]; System.arraycopy(data, 0, newData, 0, length); data = newData; } /** * Adds padding at the end of the file, if necessary. * @param alignment alignment of the padding (between 1 and 4). */ public void addPadding(int alignment) { int padding = length % alignment; switch (padding) { case 0: break; case 1 : putByte(0); putShort(0); break; case 2 : putShort(0); break; case 3 : putByte(0); break; } } /** * Adds the default padding of 4 bytes at the end of the file, if necessary. */ public void addPadding() { addPadding(4); } }