package ca.pfv.spmf.algorithms.sequentialpatterns.spam; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileInputStream; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.Set; import ca.pfv.spmf.patterns.itemset_list_integers_without_support.Itemset; import ca.pfv.spmf.tools.MemoryLogger; /** * * * This is the original implementation of the CM-SPAM algorithm described * in the paper by Fournier-Viger et al. at PAKDD 2014. *<br/><br/> * * Copyright (c) 2013 Philippe Fournier-Viger, Antonio Gomariz *<br/><br/> * * This file is part of the SPMF DATA MINING SOFTWARE * (http://www.philippe-fournier-viger.com/spmf). *<br/><br/> * * SPMF is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. *<br/><br/> * * SPMF is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. *<br/><br/> * * You should have received a copy of the GNU General Public License along with * SPMF. If not, see <http://www.gnu.org/licenses/>. * * @see Bitmap * @see Prefix * @author Philippe Fournier-Viger & Antonio Gomariz */ public class AlgoCMSPAM { // for statistics public long startTime; public long endTime; public int patternCount; // minsup private int minsup = 0; // object to write to a file BufferedWriter writer = null; // Vertical database Map<Integer, Bitmap> verticalDB = new HashMap<Integer, Bitmap>(); // List indicating the number of bits per sequence List<Integer> sequencesSize = null; int lastBitIndex = 0; // the last bit position that is used in bitmaps // maximum pattern length in terms of item count private int minimumPatternLength = 0; // maximum pattern length in terms of item count private int maximumPatternLength = Integer.MAX_VALUE; // items that need to appear in patterns found by TKS // (or any items if the array is empty) int[] mustAppearItems; // Map: key: item value: another item that followed the first item + support // (could be replaced with a triangular matrix...) Map<Integer, Map<Integer, Integer>> coocMapAfter = null; Map<Integer, Map<Integer, Integer>> coocMapEquals = null; // Map indicating for each item, the smallest tid containing this item // in a sequence. Map<Integer, Short> lastItemPositionMap; boolean useCMAPPruning = true; boolean useLastPositionPruning = false; // the max gap between two itemsets of a pattern. // It is an optional parameter that the user can set. private int maxGap = Integer.MAX_VALUE; // if true, sequence ids of each pattern will be shown when they will be output boolean outputSequenceIdentifiers; /** * Default constructor */ public AlgoCMSPAM() { } /** * Method to run the algorithm * * @param input path to an input file * @param outputFilePath path for writing the output file * @param minsupRel the minimum support as a relative value * @param outputSequenceIdentifiers if true, sequence ids will be shown with each output pattern * @throws IOException exception if error while writing the file or reading */ public void runAlgorithm(String input, String outputFilePath, double minsupRel, boolean outputSequenceIdentifiers) throws IOException { this.outputSequenceIdentifiers = outputSequenceIdentifiers; Bitmap.INTERSECTION_COUNT = 0; // create an object to write the file writer = new BufferedWriter(new FileWriter(outputFilePath)); // initialize the number of patterns found patternCount = 0; // to log the memory used MemoryLogger.getInstance().reset(); // record start time startTime = System.currentTimeMillis(); // RUN THE ALGORITHM spam(input, minsupRel); // record end time endTime = System.currentTimeMillis(); // close the file writer.close(); } /** * This is the main method for the SPAM algorithm * * @param an input file * @param minsupRel the minimum support as a relative value * @throws IOException */ private void spam(String input, double minsupRel) throws IOException { // the structure to store the vertical database // key: an item value : bitmap verticalDB = new HashMap<Integer, Bitmap>(); // structure to store the horizontal database List<int[]> inMemoryDB = new ArrayList<int[]>(); // STEP 0: SCAN THE DATABASE TO STORE THE FIRST BIT POSITION OF EACH SEQUENCE // AND CALCULATE THE TOTAL NUMBER OF BIT FOR EACH BITMAP sequencesSize = new ArrayList<Integer>(); lastBitIndex = 0; // variable to record the last bit position that we will use in bitmaps try { // read the file FileInputStream fin = new FileInputStream(new File(input)); BufferedReader reader = new BufferedReader(new InputStreamReader(fin)); String thisLine; int bitIndex = 0; // for each line (sequence) in the file until the end while ((thisLine = reader.readLine()) != null) { // if the line is a comment, is empty or is a // kind of metadata if (thisLine.isEmpty() == true || thisLine.charAt(0) == '#' || thisLine.charAt(0) == '%' || thisLine.charAt(0) == '@') { continue; } // record the length of the current sequence (for optimizations) sequencesSize.add(bitIndex); // split the sequence according to spaces into tokens String tokens[] = thisLine.split(" "); int[] transactionArray = new int[tokens.length]; boolean containsAMustAppearItem = false; for (int i = 0; i < tokens.length; i++) { int item = Integer.parseInt(tokens[i]); transactionArray[i] = item; // if it is not an itemset separator if (item == -1) { // indicate the end of an itemset // increase the number of bits that we will need for each bitmap bitIndex++; } // check if this item must appear in patterns (optional) if(itemMustAppearInPatterns(item)) { containsAMustAppearItem = true; } } // if this transaction contains at least an item that must appear // in the pattern (this feature is optional), we keep the sequence // otherwise we don't add it if(containsAMustAppearItem) { inMemoryDB.add(transactionArray); } } // record the last bit position for the bitmaps lastBitIndex = bitIndex - 1; reader.close(); // close the input file } catch (Exception e) { e.printStackTrace(); } // Calculate the absolute minimum support // by multipling the percentage with the number of // sequences in this database // minsup = 163; minsup = (int) Math.ceil((minsupRel * sequencesSize.size())); if (minsup == 0) { minsup = 1; } // STEP1: SCAN THE DATABASE TO CREATE THE BITMAP VERTICAL DATABASE REPRESENTATION try { FileInputStream fin = new FileInputStream(new File(input)); BufferedReader reader = new BufferedReader(new InputStreamReader(fin)); String thisLine; int sid = 0; // to know which sequence we are scanning int tid = 0; // to know which itemset we are scanning // for each line (sequence) from the input file while ((thisLine = reader.readLine()) != null) { // split the sequence according to spaces into tokens for (String token : thisLine.split(" ")) { if (token.equals("-1")) { // indicate the end of an itemset tid++; } else if (token.equals("-2")) { // indicate the end of a sequence // determineSection(bitindex - previousBitIndex); // register the sequence length for the bitmap sid++; tid = 0; } else { // indicate an item // Get the bitmap for this item. If none, create one. Integer item = Integer.parseInt(token); Bitmap bitmapItem = verticalDB.get(item); if (bitmapItem == null) { bitmapItem = new Bitmap(lastBitIndex); verticalDB.put(item, bitmapItem); } // Register the bit in the bitmap for this item bitmapItem.registerBit(sid, tid, sequencesSize); } } } reader.close(); } catch (Exception e) { e.printStackTrace(); } // STEP2: REMOVE INFREQUENT ITEMS FROM THE DATABASE BECAUSE THEY WILL NOT APPEAR IN ANY FREQUENT SEQUENTIAL PATTERNS List<Integer> frequentItems = new ArrayList<Integer>(); Iterator<Entry<Integer, Bitmap>> iter = verticalDB.entrySet().iterator(); // we iterate over items from the vertical database that we have in memory while (iter.hasNext()) { // we get the bitmap for this item Map.Entry<Integer, Bitmap> entry = (Map.Entry<Integer, Bitmap>) iter.next(); // if the cardinality of this bitmap is lower than minsup if (entry.getValue().getSupport() < minsup) { // we remove this item from the database. iter.remove(); } else { // otherwise, we save this item as a frequent // sequential pattern of size 1 if(minimumPatternLength <= 1 && maximumPatternLength >=1) { savePattern(entry.getKey(), entry.getValue()); } // and we add this item to a list of frequent items // that we will use later. frequentItems.add(entry.getKey()); } } if (maximumPatternLength <= 1) { return; } // STEP 3.1 CREATE CMAP coocMapEquals = new HashMap<Integer, Map<Integer, Integer>>(frequentItems.size()); coocMapAfter = new HashMap<Integer, Map<Integer, Integer>>(frequentItems.size()); if (useLastPositionPruning) { lastItemPositionMap = new HashMap<Integer, Short>(frequentItems.size()); } for (int[] transaction : inMemoryDB) { short itemsetCount = 0; Set<Integer> alreadyProcessed = new HashSet<Integer>(); Map<Integer, Set<Integer>> equalProcessed = new HashMap<>(); loopI: for (int i = 0; i < transaction.length; i++) { Integer itemI = transaction[i]; Set equalSet = equalProcessed.get(itemI); if (equalSet == null) { equalSet = new HashSet(); equalProcessed.put(itemI, equalSet); } if (itemI < 0) { itemsetCount++; continue; } // System.out.println(itemsetCount); // update lastItemMap if (useLastPositionPruning) { Short last = lastItemPositionMap.get(itemI); if (last == null || last < itemsetCount) { lastItemPositionMap.put(itemI, itemsetCount); } } Bitmap bitmapOfItem = verticalDB.get(itemI); if (bitmapOfItem == null || bitmapOfItem.getSupport() < minsup) { continue; } Set<Integer> alreadyProcessedB = new HashSet<Integer>(); // NEW boolean sameItemset = true; for (int j = i + 1; j < transaction.length; j++) { Integer itemJ = transaction[j]; if (itemJ < 0) { sameItemset = false; continue; } Bitmap bitmapOfitemJ = verticalDB.get(itemJ); if (bitmapOfitemJ == null || bitmapOfitemJ.getSupport() < minsup) { continue; } // if (itemI != itemJ){ Map<Integer, Integer> map = null; if (sameItemset) { if (!equalSet.contains(itemJ)) { map = coocMapEquals.get(itemI); if (map == null) { map = new HashMap<Integer, Integer>(); coocMapEquals.put(itemI, map); } Integer support = map.get(itemJ); if (support == null) { map.put(itemJ, 1); } else { map.put(itemJ, ++support); } equalSet.add(itemJ); } } else if (!alreadyProcessedB.contains(itemJ)) { if (alreadyProcessed.contains(itemI)) { continue loopI; } map = coocMapAfter.get(itemI); if (map == null) { map = new HashMap<Integer, Integer>(); coocMapAfter.put(itemI, map); } Integer support = map.get(itemJ); if (support == null) { map.put(itemJ, 1); } else { map.put(itemJ, ++support); } alreadyProcessedB.add(itemJ); // NEW } } alreadyProcessed.add(itemI); } } // STEP3: WE PERFORM THE RECURSIVE DEPTH FIRST SEARCH // to find longer sequential patterns recursively // for each frequent item for (Entry<Integer, Bitmap> entry : verticalDB.entrySet()) { // We create a prefix with that item Prefix prefix = new Prefix(); prefix.addItemset(new Itemset(entry.getKey())); // We call the depth first search method with that prefix // and the list of frequent items to try to find // larger sequential patterns by appending some of these // items. dfsPruning(prefix, entry.getValue(), frequentItems, frequentItems, entry.getKey(), 2, entry.getKey()); } } /** * This is the dfsPruning method as described in the SPAM paper. * * @param prefix the current prefix * @param prefixBitmap the bitmap corresponding to the current prefix * @param sn a list of items to be considered for i-steps * @param in a list of items to be considered for s-steps * @param hasToBeGreaterThanForIStep * @param m size of the current prefix in terms of items * @param lastAppendedItem the last appended item to the prefix * @throws IOException if there is an error writing a pattern to the output * file */ private void dfsPruning(Prefix prefix, Bitmap prefixBitmap, List<Integer> sn, List<Integer> in, int hasToBeGreaterThanForIStep, int m, Integer lastAppendedItem) throws IOException { // System.out.println(prefix.toString()); // ====== S-STEPS ====== // Temporary variables (as described in the paper) List<Integer> sTemp = new ArrayList<Integer>(); List<Bitmap> sTempBitmaps = new ArrayList<Bitmap>(); // for CMAP pruning, we will only check against the last appended item Map<Integer, Integer> mapSupportItemsAfter = coocMapAfter.get(lastAppendedItem); // for each item in sn loopi: for (Integer i : sn) { // LAST POSITION PRUNING /*if (useLastPositionPruning && lastItemPositionMap.get(i) < prefixBitmap.firstItemsetID) { // System.out.println("TEST"); continue loopi; }*/ // CMAP PRUNING // we only check with the last appended item if (useCMAPPruning) { if (mapSupportItemsAfter == null) { continue loopi; } Integer support = mapSupportItemsAfter.get(i); if (support == null || support < minsup) { // System.out.println("PRUNE"); continue loopi; } } // perform the S-STEP with that item to get a new bitmap Bitmap.INTERSECTION_COUNT++; Bitmap newBitmap = prefixBitmap.createNewBitmapSStep(verticalDB.get(i), sequencesSize, lastBitIndex, maxGap); // if the support is higher than minsup if (newBitmap.getSupport() >= minsup) { // record that item and pattern in temporary variables sTemp.add(i); sTempBitmaps.add(newBitmap); } } // for each pattern recorded for the s-step for (int k = 0; k < sTemp.size(); k++) { int item = sTemp.get(k); // create the new prefix Prefix prefixSStep = prefix.cloneSequence(); prefixSStep.addItemset(new Itemset(item)); // create the new bitmap Bitmap newBitmap = sTempBitmaps.get(k); // save the pattern to the file if(m >= minimumPatternLength) { savePattern(prefixSStep, newBitmap); } // recursively try to extend that pattern if (maximumPatternLength > m) { dfsPruning(prefixSStep, newBitmap, sTemp, sTemp, item, m + 1, item); } } Map<Integer, Integer> mapSupportItemsEquals = coocMapEquals.get(lastAppendedItem); // ======== I STEPS ======= // Temporary variables List<Integer> iTemp = new ArrayList<Integer>(); List<Bitmap> iTempBitmaps = new ArrayList<Bitmap>(); // for each item in in loop2: for (Integer i : in) { // the item has to be greater than the largest item // already in the last itemset of prefix. if (i > hasToBeGreaterThanForIStep) { // LAST POSITION PRUNING /*if (useLastPositionPruning && lastItemPositionMap.get(i) < prefixBitmap.firstItemsetID) { continue loop2; }*/ // CMAP PRUNING if (useCMAPPruning) { if (mapSupportItemsEquals == null) { continue loop2; } Integer support = mapSupportItemsEquals.get(i); if (support == null || support < minsup) { continue loop2; } } // Perform an i-step with this item and the current prefix. // This creates a new bitmap Bitmap.INTERSECTION_COUNT++; Bitmap newBitmap = prefixBitmap.createNewBitmapIStep(verticalDB.get(i), sequencesSize, lastBitIndex); // If the support is no less than minsup if (newBitmap.getSupport() >= minsup) { // record that item and pattern in temporary variables iTemp.add(i); iTempBitmaps.add(newBitmap); } } } // for each pattern recorded for the i-step for (int k = 0; k < iTemp.size(); k++) { int item = iTemp.get(k); // create the new prefix Prefix prefixIStep = prefix.cloneSequence(); prefixIStep.getItemsets().get(prefixIStep.size() - 1).addItem(item); // create the new bitmap Bitmap newBitmap = iTempBitmaps.get(k); // save the pattern if(m >= minimumPatternLength) { savePattern(prefixIStep, newBitmap); } // recursively try to extend that pattern if (maximumPatternLength > m) { dfsPruning(prefixIStep, newBitmap, sTemp, iTemp, item, m + 1, item); } } // check the memory usage MemoryLogger.getInstance().checkMemory(); } /** * Save a pattern of size 1 to the output file * * @param item the item * @param bitmap its bitmap * @throws IOException exception if error while writing to the file */ private void savePattern(Integer item, Bitmap bitmap) throws IOException { // First, we check if the pattern contains the desired items (optional) // We only do that if the user has specified some items that must appear in // patterns. if(mustAppearItems != null) { // if the pattern does not contains all required items, then return if(mustAppearItems.length > 1) { return; } if(item.equals(mustAppearItems[0]) == false){ return; } } patternCount++; // increase the pattern count StringBuilder r = new StringBuilder(""); r.append(item); r.append(" -1 "); r.append("SUP: "); r.append(bitmap.getSupport()); // if the user wants the sequence IDs, we will show them if(outputSequenceIdentifiers) { r.append(" #SID: "); r.append(bitmap.getSIDs(sequencesSize)); } writer.write(r.toString()); writer.newLine(); } /** * Save a pattern of size > 1 to the output file. * * @param prefix the prefix * @param bitmap its bitmap * @throws IOException exception if error while writing to the file */ private void savePattern(Prefix prefix, Bitmap bitmap) throws IOException { // First, we check if the pattern contains the desired items (optional) // We only do that if the user has specified some items that must appear in // patterns. if(mustAppearItems != null) { Set<Integer> itemsFound = new HashSet<Integer>(); // for each item in the pattern loop: for(Itemset itemset : prefix.getItemsets()){ for(Integer item : itemset.getItems()) { // if the user required that this item must appear in all patterns if(itemMustAppearInPatterns(item)) { // we note it itemsFound.add(item); if(itemsFound.size() == mustAppearItems.length) { break loop; } } } } // if the pattern does not contains all required items, then return if(itemsFound.size() != mustAppearItems.length) { return; } } patternCount++; StringBuilder r = new StringBuilder(""); for (Itemset itemset : prefix.getItemsets()) { // r.append('('); for (Integer item : itemset.getItems()) { String string = item.toString(); r.append(string); r.append(' '); } r.append("-1 "); } r.append("SUP: "); r.append(bitmap.getSupport()); // if the user wants the sequence IDs, we will show them if(outputSequenceIdentifiers) { r.append(" #SID: "); r.append(bitmap.getSIDs(sequencesSize)); } writer.write(r.toString()); // System.out.println(r.toString()); writer.newLine(); } /** * Print the statistics of the algorithm execution to System.out. */ public void printStatistics() { StringBuilder r = new StringBuilder(200); r.append("============= Algorithm - STATISTICS =============\n Total time ~ "); r.append(endTime - startTime); r.append(" ms\n"); r.append(" Frequent sequences count : " + patternCount); r.append('\n'); r.append(" Max memory (mb) : "); r.append(MemoryLogger.getInstance().getMaxMemory()); r.append(patternCount); r.append('\n'); r.append("minsup " + minsup); r.append('\n'); r.append("Intersection count " + Bitmap.INTERSECTION_COUNT + " \n"); r.append("===================================================\n"); System.out.println(r.toString()); } /** * Get the maximum length of patterns to be found (in terms of itemset * count) * * @return the maximumPatternLength */ public int getMaximumPatternLength() { return maximumPatternLength; } /** * Set the maximum length of patterns to be found (in terms of itemset * count) * * @param maximumPatternLength the maximumPatternLength to set */ public void setMaximumPatternLength(int maximumPatternLength) { this.maximumPatternLength = maximumPatternLength; } /** * Set the minimum length of patterns to be found (in terms of itemset count) * @param minimumPatternLength the minimum pattern length to set */ public void setMinimumPatternLength(int minimumPatternLength) { this.minimumPatternLength = minimumPatternLength; } /** * Optional method to specify the items that must appears in patterns found by TKS * @param mustAppearItems an array of items */ public void setMustAppearItems(int[] mustAppearItems) { if(mustAppearItems.length > 0) { this.mustAppearItems = mustAppearItems; }else { this.mustAppearItems = null; } } /** * Check if an item must appear in the pattern * @param item the item * @return true if the user has specified that this item must appear in the pattern */ public boolean itemMustAppearInPatterns(int item) { return (mustAppearItems == null) || Arrays.binarySearch(mustAppearItems, item) >=0; } /** * This method allows to specify the maximum gap * between itemsets of patterns found by the algorithm. * If set to 1, only patterns of contiguous itemsets * will be found (no gap). * @param maxGap the maximum gap (an integer) */ public void setMaxGap(int maxGap) { this.maxGap = maxGap; } }