package org.bouncycastle.crypto.signers; import java.math.BigInteger; import java.security.SecureRandom; import org.bouncycastle.crypto.CipherParameters; import org.bouncycastle.crypto.DSA; import org.bouncycastle.crypto.params.ECDomainParameters; import org.bouncycastle.crypto.params.ECKeyParameters; import org.bouncycastle.crypto.params.ECPrivateKeyParameters; import org.bouncycastle.crypto.params.ECPublicKeyParameters; import org.bouncycastle.crypto.params.ParametersWithRandom; import org.bouncycastle.math.ec.ECAlgorithms; import org.bouncycastle.math.ec.ECConstants; import org.bouncycastle.math.ec.ECMultiplier; import org.bouncycastle.math.ec.ECPoint; import org.bouncycastle.math.ec.FixedPointCombMultiplier; /** * EC-DSA as described in X9.62 */ public class ECDSASigner implements ECConstants, DSA { private final DSAKCalculator kCalculator; private ECKeyParameters key; private SecureRandom random; /** * Default configuration, random K values. */ public ECDSASigner() { this.kCalculator = new RandomDSAKCalculator(); } /** * Configuration with an alternate, possibly deterministic calculator of K. * * @param kCalculator a K value calculator. */ public ECDSASigner(DSAKCalculator kCalculator) { this.kCalculator = kCalculator; } public void init( boolean forSigning, CipherParameters param) { SecureRandom providedRandom = null; if (forSigning) { if (param instanceof ParametersWithRandom) { ParametersWithRandom rParam = (ParametersWithRandom)param; this.key = (ECPrivateKeyParameters)rParam.getParameters(); providedRandom = rParam.getRandom(); } else { this.key = (ECPrivateKeyParameters)param; } } else { this.key = (ECPublicKeyParameters)param; } this.random = initSecureRandom(forSigning && !kCalculator.isDeterministic(), providedRandom); } // 5.3 pg 28 /** * generate a signature for the given message using the key we were * initialised with. For conventional DSA the message should be a SHA-1 * hash of the message of interest. * * @param message the message that will be verified later. */ public BigInteger[] generateSignature( byte[] message) { ECDomainParameters ec = key.getParameters(); BigInteger n = ec.getN(); BigInteger e = calculateE(n, message); BigInteger d = ((ECPrivateKeyParameters)key).getD(); if (kCalculator.isDeterministic()) { kCalculator.init(n, d, message); } else { kCalculator.init(n, random); } BigInteger r, s; ECMultiplier basePointMultiplier = createBasePointMultiplier(); // 5.3.2 do // generate s { BigInteger k; do // generate r { k = kCalculator.nextK(); ECPoint p = basePointMultiplier.multiply(ec.getG(), k).normalize(); // 5.3.3 r = p.getAffineXCoord().toBigInteger().mod(n); } while (r.equals(ZERO)); s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n); } while (s.equals(ZERO)); return new BigInteger[]{ r, s }; } // 5.4 pg 29 /** * return true if the value r and s represent a DSA signature for * the passed in message (for standard DSA the message should be * a SHA-1 hash of the real message to be verified). */ public boolean verifySignature( byte[] message, BigInteger r, BigInteger s) { ECDomainParameters ec = key.getParameters(); BigInteger n = ec.getN(); BigInteger e = calculateE(n, message); // r in the range [1,n-1] if (r.compareTo(ONE) < 0 || r.compareTo(n) >= 0) { return false; } // s in the range [1,n-1] if (s.compareTo(ONE) < 0 || s.compareTo(n) >= 0) { return false; } BigInteger c = s.modInverse(n); BigInteger u1 = e.multiply(c).mod(n); BigInteger u2 = r.multiply(c).mod(n); ECPoint G = ec.getG(); ECPoint Q = ((ECPublicKeyParameters)key).getQ(); ECPoint point = ECAlgorithms.sumOfTwoMultiplies(G, u1, Q, u2).normalize(); // components must be bogus. if (point.isInfinity()) { return false; } BigInteger v = point.getAffineXCoord().toBigInteger().mod(n); return v.equals(r); } protected BigInteger calculateE(BigInteger n, byte[] message) { int log2n = n.bitLength(); int messageBitLength = message.length * 8; BigInteger e = new BigInteger(1, message); if (log2n < messageBitLength) { e = e.shiftRight(messageBitLength - log2n); } return e; } protected ECMultiplier createBasePointMultiplier() { return new FixedPointCombMultiplier(); } protected SecureRandom initSecureRandom(boolean needed, SecureRandom provided) { return !needed ? null : (provided != null) ? provided : new SecureRandom(); } }