/* * Copyright (c) 2014 Cisco Systems, Inc. and others. All rights reserved. * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License v1.0 which accompanies this distribution, * and is available at http://www.eclipse.org/legal/epl-v10.html */ package org.opendaylight.yangtools.yang.data.impl.schema.tree; import static com.google.common.base.Preconditions.checkArgument; import com.google.common.base.Optional; import com.google.common.base.Preconditions; import com.google.common.base.Verify; import java.util.Collection; import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier; import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier.PathArgument; import org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode; import org.opendaylight.yangtools.yang.data.api.schema.NormalizedNodeContainer; import org.opendaylight.yangtools.yang.data.api.schema.tree.ConflictingModificationAppliedException; import org.opendaylight.yangtools.yang.data.api.schema.tree.DataValidationFailedException; import org.opendaylight.yangtools.yang.data.api.schema.tree.ModificationType; import org.opendaylight.yangtools.yang.data.api.schema.tree.ModifiedNodeDoesNotExistException; import org.opendaylight.yangtools.yang.data.api.schema.tree.DataTreeConfiguration; import org.opendaylight.yangtools.yang.data.api.schema.tree.TreeType; import org.opendaylight.yangtools.yang.data.api.schema.tree.spi.MutableTreeNode; import org.opendaylight.yangtools.yang.data.api.schema.tree.spi.TreeNode; import org.opendaylight.yangtools.yang.data.api.schema.tree.spi.TreeNodeFactory; import org.opendaylight.yangtools.yang.data.api.schema.tree.spi.Version; import org.opendaylight.yangtools.yang.data.impl.schema.builder.api.NormalizedNodeContainerBuilder; abstract class AbstractNodeContainerModificationStrategy extends SchemaAwareApplyOperation { private final Class<? extends NormalizedNode<?, ?>> nodeClass; private final boolean verifyChildrenStructure; protected AbstractNodeContainerModificationStrategy(final Class<? extends NormalizedNode<?, ?>> nodeClass, final DataTreeConfiguration treeConfig) { this.nodeClass = Preconditions.checkNotNull(nodeClass , "nodeClass"); this.verifyChildrenStructure = (treeConfig.getTreeType() == TreeType.CONFIGURATION); } @SuppressWarnings("rawtypes") @Override void verifyStructure(final NormalizedNode<?, ?> writtenValue, final boolean verifyChildren) { checkArgument(nodeClass.isInstance(writtenValue), "Node %s is not of type %s", writtenValue, nodeClass); checkArgument(writtenValue instanceof NormalizedNodeContainer); if (verifyChildrenStructure && verifyChildren) { final NormalizedNodeContainer container = (NormalizedNodeContainer) writtenValue; for (final Object child : container.getValue()) { checkArgument(child instanceof NormalizedNode); final NormalizedNode<?, ?> castedChild = (NormalizedNode<?, ?>) child; final Optional<ModificationApplyOperation> childOp = getChild(castedChild.getIdentifier()); if (childOp.isPresent()) { childOp.get().verifyStructure(castedChild, verifyChildren); } else { throw new SchemaValidationFailedException(String.format( "Node %s is not a valid child of %s according to the schema.", castedChild.getIdentifier(), container.getIdentifier())); } } } } @Override protected void recursivelyVerifyStructure(final NormalizedNode<?, ?> value) { final NormalizedNodeContainer container = (NormalizedNodeContainer) value; for (final Object child : container.getValue()) { checkArgument(child instanceof NormalizedNode); final NormalizedNode<?, ?> castedChild = (NormalizedNode<?, ?>) child; final Optional<ModificationApplyOperation> childOp = getChild(castedChild.getIdentifier()); if (childOp.isPresent()) { childOp.get().recursivelyVerifyStructure(castedChild); } else { throw new SchemaValidationFailedException( String.format("Node %s is not a valid child of %s according to the schema.", castedChild.getIdentifier(), container.getIdentifier())); } } } @Override protected TreeNode applyWrite(final ModifiedNode modification, final Optional<TreeNode> currentMeta, final Version version) { final NormalizedNode<?, ?> newValue = modification.getWrittenValue(); final TreeNode newValueMeta = TreeNodeFactory.createTreeNode(newValue, version); if (modification.getChildren().isEmpty()) { return newValueMeta; } /* * This is where things get interesting. The user has performed a write and * then she applied some more modifications to it. So we need to make sense * of that an apply the operations on top of the written value. We could have * done it during the write, but this operation is potentially expensive, so * we have left it out of the fast path. * * As it turns out, once we materialize the written data, we can share the * code path with the subtree change. So let's create an unsealed TreeNode * and run the common parts on it -- which end with the node being sealed. * * FIXME: this code needs to be moved out from the prepare() path and into * the read() and seal() paths. Merging of writes needs to be charged * to the code which originated this, not to the code which is * attempting to make it visible. */ final MutableTreeNode mutable = newValueMeta.mutable(); mutable.setSubtreeVersion(version); @SuppressWarnings("rawtypes") final NormalizedNodeContainerBuilder dataBuilder = createBuilder(newValue); final TreeNode result = mutateChildren(mutable, dataBuilder, version, modification.getChildren()); // We are good to go except one detail: this is a single logical write, but // we have a result TreeNode which has been forced to materialized, e.g. it // is larger than it needs to be. Create a new TreeNode to host the data. return TreeNodeFactory.createTreeNode(result.getData(), version); } /** * Applies write/remove diff operation for each modification child in modification subtree. * Operation also sets the Data tree references for each Tree Node (Index Node) in meta (MutableTreeNode) structure. * * @param meta MutableTreeNode (IndexTreeNode) * @param data DataBuilder * @param nodeVersion Version of TreeNode * @param modifications modification operations to apply * @return Sealed immutable copy of TreeNode structure with all Data Node references set. */ @SuppressWarnings({ "rawtypes", "unchecked" }) private TreeNode mutateChildren(final MutableTreeNode meta, final NormalizedNodeContainerBuilder data, final Version nodeVersion, final Iterable<ModifiedNode> modifications) { for (final ModifiedNode mod : modifications) { final YangInstanceIdentifier.PathArgument id = mod.getIdentifier(); final Optional<TreeNode> cm = meta.getChild(id); final Optional<TreeNode> result = resolveChildOperation(id).apply(mod, cm, nodeVersion); if (result.isPresent()) { final TreeNode tn = result.get(); meta.addChild(tn); data.addChild(tn.getData()); } else { meta.removeChild(id); data.removeChild(id); } } meta.setData(data.build()); return meta.seal(); } @Override protected TreeNode applyMerge(final ModifiedNode modification, final TreeNode currentMeta, final Version version) { /* * The node which we are merging exists. We now need to expand any child operations implied by the value. Once * we do that, ModifiedNode children will look like this node were a TOUCH and we will let applyTouch() do the * heavy lifting of applying the children recursively (either through here or through applyWrite(). */ final NormalizedNode<?, ?> value = modification.getWrittenValue(); Verify.verify(value instanceof NormalizedNodeContainer, "Attempted to merge non-container %s", value); @SuppressWarnings({"unchecked", "rawtypes"}) final Collection<NormalizedNode<?, ?>> children = ((NormalizedNodeContainer) value).getValue(); for (final NormalizedNode<?, ?> c : children) { final PathArgument id = c.getIdentifier(); modification.modifyChild(id, resolveChildOperation(id), version); } return applyTouch(modification, currentMeta, version); } private void mergeChildrenIntoModification(final ModifiedNode modification, final Collection<NormalizedNode<?, ?>> children, final Version version) { for (final NormalizedNode<?, ?> c : children) { final ModificationApplyOperation childOp = resolveChildOperation(c.getIdentifier()); final ModifiedNode childNode = modification.modifyChild(c.getIdentifier(), childOp, version); childOp.mergeIntoModifiedNode(childNode, c, version); } } @Override final void mergeIntoModifiedNode(final ModifiedNode modification, final NormalizedNode<?, ?> value, final Version version) { @SuppressWarnings({ "unchecked", "rawtypes" }) final Collection<NormalizedNode<?, ?>> children = ((NormalizedNodeContainer)value).getValue(); switch (modification.getOperation()) { case NONE: // Fresh node, just record a MERGE with a value recursivelyVerifyStructure(value); modification.updateValue(LogicalOperation.MERGE, value); return; case TOUCH: mergeChildrenIntoModification(modification, children, version); // We record empty merge value, since real children merges // are already expanded. This is needed to satisfy non-null for merge // original merge value can not be used since it mean different // order of operation - parent changes are always resolved before // children ones, and having node in TOUCH means children was modified // before. modification.updateValue(LogicalOperation.MERGE, createEmptyValue(value)); return; case MERGE: // Merging into an existing node. Merge data children modifications (maybe recursively) and mark as MERGE, // invalidating cached snapshot mergeChildrenIntoModification(modification, children, version); modification.updateOperationType(LogicalOperation.MERGE); return; case DELETE: // Delete performs a data dependency check on existence of the node. Performing a merge on DELETE means we // are really performing a write. One thing that ruins that are any child modifications. If there are any, // we will perform a read() to get the current state of affairs, turn this into into a WRITE and then // append any child entries. if (!modification.getChildren().isEmpty()) { // Version does not matter here as we'll throw it out final Optional<TreeNode> current = apply(modification, modification.getOriginal(), Version.initial()); if (current.isPresent()) { modification.updateValue(LogicalOperation.WRITE, current.get().getData()); mergeChildrenIntoModification(modification, children, version); return; } } modification.updateValue(LogicalOperation.WRITE, value); return; case WRITE: // We are augmenting a previous write. We'll just walk value's children, get the corresponding ModifiedNode // and run recursively on it mergeChildrenIntoModification(modification, children, version); modification.updateOperationType(LogicalOperation.WRITE); return; } throw new IllegalArgumentException("Unsupported operation " + modification.getOperation()); } @Override protected TreeNode applyTouch(final ModifiedNode modification, final TreeNode currentMeta, final Version version) { /* * The user may have issued an empty merge operation. In this case we do not perform * a data tree mutation, do not pass GO, and do not collect useless garbage. It * also means the ModificationType is UNMODIFIED. */ final Collection<ModifiedNode> children = modification.getChildren(); if (!children.isEmpty()) { @SuppressWarnings("rawtypes") final NormalizedNodeContainerBuilder dataBuilder = createBuilder(currentMeta.getData()); final MutableTreeNode newMeta = currentMeta.mutable(); newMeta.setSubtreeVersion(version); final TreeNode ret = mutateChildren(newMeta, dataBuilder, version, children); /* * It is possible that the only modifications under this node were empty merges, * which were turned into UNMODIFIED. If that is the case, we can turn this operation * into UNMODIFIED, too, potentially cascading it up to root. This has the benefit * of speeding up any users, who can skip processing child nodes. * * In order to do that, though, we have to check all child operations are UNMODIFIED. * Let's do precisely that, stopping as soon we find a different result. */ for (final ModifiedNode child : children) { if (child.getModificationType() != ModificationType.UNMODIFIED) { modification.resolveModificationType(ModificationType.SUBTREE_MODIFIED); return ret; } } } // The merge operation did not have any children, or all of them turned out to be UNMODIFIED, hence do not // replace the metadata node. modification.resolveModificationType(ModificationType.UNMODIFIED); return currentMeta; } @Override protected void checkTouchApplicable(final YangInstanceIdentifier path, final NodeModification modification, final Optional<TreeNode> current, final Version version) throws DataValidationFailedException { if (!modification.getOriginal().isPresent() && !current.isPresent()) { throw new ModifiedNodeDoesNotExistException(path, String.format("Node %s does not exist. Cannot apply modification to its children.", path)); } if (!current.isPresent()) { throw new ConflictingModificationAppliedException(path, "Node was deleted by other transaction."); } checkChildPreconditions(path, modification, current.get(), version); } /** * Recursively check child preconditions. * * @param path current node path * @param modification current modification * @param current Current data tree node. */ private void checkChildPreconditions(final YangInstanceIdentifier path, final NodeModification modification, final TreeNode current, final Version version) throws DataValidationFailedException { for (final NodeModification childMod : modification.getChildren()) { final YangInstanceIdentifier.PathArgument childId = childMod.getIdentifier(); final Optional<TreeNode> childMeta = current.getChild(childId); final YangInstanceIdentifier childPath = path.node(childId); resolveChildOperation(childId).checkApplicable(childPath, childMod, childMeta, version); } } @Override protected void checkMergeApplicable(final YangInstanceIdentifier path, final NodeModification modification, final Optional<TreeNode> current, final Version version) throws DataValidationFailedException { if (current.isPresent()) { checkChildPreconditions(path, modification, current.get(), version); } } protected boolean verifyChildrenStructure() { return verifyChildrenStructure; } @SuppressWarnings("rawtypes") protected abstract NormalizedNodeContainerBuilder createBuilder(NormalizedNode<?, ?> original); protected abstract NormalizedNode<?, ?> createEmptyValue(NormalizedNode<?, ?> original); }