/* -*-mode:java; c-basic-offset:2; indent-tabs-mode:nil -*- */ /* JOrbis * Copyright (C) 2000 ymnk, JCraft,Inc. * * Written by: 2000 ymnk<ymnk@jcraft.com> * * Many thanks to * Monty <monty@xiph.org> and * The XIPHOPHORUS Company http://www.xiph.org/ . * JOrbis has been based on their awesome works, Vorbis codec. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ package com.jcraft.jorbis; import com.jcraft.jogg.*; class CodeBook{ int dim; // codebook dimensions (elements per vector) int entries; // codebook entries StaticCodeBook c=new StaticCodeBook(); float[] valuelist; // list of dim*entries actual entry values int[] codelist; // list of bitstream codewords for each entry DecodeAux decode_tree; // returns the number of bits int encode(int a, Buffer b){ b.write(codelist[a], c.lengthlist[a]); return (c.lengthlist[a]); } // One the encode side, our vector writers are each designed for a // specific purpose, and the encoder is not flexible without modification: // // The LSP vector coder uses a single stage nearest-match with no // interleave, so no step and no error return. This is specced by floor0 // and doesn't change. // // Residue0 encoding interleaves, uses multiple stages, and each stage // peels of a specific amount of resolution from a lattice (thus we want // to match by threshhold, not nearest match). Residue doesn't *have* to // be encoded that way, but to change it, one will need to add more // infrastructure on the encode side (decode side is specced and simpler) // floor0 LSP (single stage, non interleaved, nearest match) // returns entry number and *modifies a* to the quantization value int errorv(float[] a){ int best=best(a, 1); for(int k=0; k<dim; k++){ a[k]=valuelist[best*dim+k]; } return (best); } // returns the number of bits and *modifies a* to the quantization value int encodev(int best, float[] a, Buffer b){ for(int k=0; k<dim; k++){ a[k]=valuelist[best*dim+k]; } return (encode(best, b)); } // res0 (multistage, interleave, lattice) // returns the number of bits and *modifies a* to the remainder value int encodevs(float[] a, Buffer b, int step, int addmul){ int best=besterror(a, step, addmul); return (encode(best, b)); } private int[] t=new int[15]; // decodevs_add is synchronized for re-using t. synchronized int decodevs_add(float[] a, int offset, Buffer b, int n){ int step=n/dim; int entry; int i, j, o; if(t.length<step){ t=new int[step]; } for(i=0; i<step; i++){ entry=decode(b); if(entry==-1) return (-1); t[i]=entry*dim; } for(i=0, o=0; i<dim; i++, o+=step){ for(j=0; j<step; j++){ a[offset+o+j]+=valuelist[t[j]+i]; } } return (0); } int decodev_add(float[] a, int offset, Buffer b, int n){ int i, j, entry; int t; if(dim>8){ for(i=0; i<n;){ entry=decode(b); if(entry==-1) return (-1); t=entry*dim; for(j=0; j<dim;){ a[offset+(i++)]+=valuelist[t+(j++)]; } } } else{ for(i=0; i<n;){ entry=decode(b); if(entry==-1) return (-1); t=entry*dim; j=0; switch(dim){ case 8: a[offset+(i++)]+=valuelist[t+(j++)]; case 7: a[offset+(i++)]+=valuelist[t+(j++)]; case 6: a[offset+(i++)]+=valuelist[t+(j++)]; case 5: a[offset+(i++)]+=valuelist[t+(j++)]; case 4: a[offset+(i++)]+=valuelist[t+(j++)]; case 3: a[offset+(i++)]+=valuelist[t+(j++)]; case 2: a[offset+(i++)]+=valuelist[t+(j++)]; case 1: a[offset+(i++)]+=valuelist[t+(j++)]; case 0: break; } } } return (0); } int decodev_set(float[] a, int offset, Buffer b, int n){ int i, j, entry; int t; for(i=0; i<n;){ entry=decode(b); if(entry==-1) return (-1); t=entry*dim; for(j=0; j<dim;){ a[offset+i++]=valuelist[t+(j++)]; } } return (0); } int decodevv_add(float[][] a, int offset, int ch, Buffer b, int n){ int i, j, entry; int chptr=0; for(i=offset/ch; i<(offset+n)/ch;){ entry=decode(b); if(entry==-1) return (-1); int t=entry*dim; for(j=0; j<dim; j++){ a[chptr++][i]+=valuelist[t+j]; if(chptr==ch){ chptr=0; i++; } } } return (0); } // Decode side is specced and easier, because we don't need to find // matches using different criteria; we simply read and map. There are // two things we need to do 'depending': // // We may need to support interleave. We don't really, but it's // convenient to do it here rather than rebuild the vector later. // // Cascades may be additive or multiplicitive; this is not inherent in // the codebook, but set in the code using the codebook. Like // interleaving, it's easiest to do it here. // stage==0 -> declarative (set the value) // stage==1 -> additive // stage==2 -> multiplicitive // returns the entry number or -1 on eof int decode(Buffer b){ int ptr=0; DecodeAux t=decode_tree; int lok=b.look(t.tabn); if(lok>=0){ ptr=t.tab[lok]; b.adv(t.tabl[lok]); if(ptr<=0){ return -ptr; } } do{ switch(b.read1()){ case 0: ptr=t.ptr0[ptr]; break; case 1: ptr=t.ptr1[ptr]; break; case -1: default: return (-1); } } while(ptr>0); return (-ptr); } // returns the entry number or -1 on eof int decodevs(float[] a, int index, Buffer b, int step, int addmul){ int entry=decode(b); if(entry==-1) return (-1); switch(addmul){ case -1: for(int i=0, o=0; i<dim; i++, o+=step) a[index+o]=valuelist[entry*dim+i]; break; case 0: for(int i=0, o=0; i<dim; i++, o+=step) a[index+o]+=valuelist[entry*dim+i]; break; case 1: for(int i=0, o=0; i<dim; i++, o+=step) a[index+o]*=valuelist[entry*dim+i]; break; default: //System.err.println("CodeBook.decodeves: addmul="+addmul); } return (entry); } int best(float[] a, int step){ // brute force it! { int besti=-1; float best=0.f; int e=0; for(int i=0; i<entries; i++){ if(c.lengthlist[i]>0){ float _this=dist(dim, valuelist, e, a, step); if(besti==-1||_this<best){ best=_this; besti=i; } } e+=dim; } return (besti); } } // returns the entry number and *modifies a* to the remainder value int besterror(float[] a, int step, int addmul){ int best=best(a, step); switch(addmul){ case 0: for(int i=0, o=0; i<dim; i++, o+=step) a[o]-=valuelist[best*dim+i]; break; case 1: for(int i=0, o=0; i<dim; i++, o+=step){ float val=valuelist[best*dim+i]; if(val==0){ a[o]=0; } else{ a[o]/=val; } } break; } return (best); } void clear(){ } private static float dist(int el, float[] ref, int index, float[] b, int step){ float acc=(float)0.; for(int i=0; i<el; i++){ float val=(ref[index+i]-b[i*step]); acc+=val*val; } return (acc); } int init_decode(StaticCodeBook s){ c=s; entries=s.entries; dim=s.dim; valuelist=s.unquantize(); decode_tree=make_decode_tree(); if(decode_tree==null){ clear(); return (-1); } return (0); } // given a list of word lengths, generate a list of codewords. Works // for length ordered or unordered, always assigns the lowest valued // codewords first. Extended to handle unused entries (length 0) static int[] make_words(int[] l, int n){ int[] marker=new int[33]; int[] r=new int[n]; for(int i=0; i<n; i++){ int length=l[i]; if(length>0){ int entry=marker[length]; // when we claim a node for an entry, we also claim the nodes // below it (pruning off the imagined tree that may have dangled // from it) as well as blocking the use of any nodes directly // above for leaves // update ourself if(length<32&&(entry>>>length)!=0){ // error condition; the lengths must specify an overpopulated tree //free(r); return (null); } r[i]=entry; // Look to see if the next shorter marker points to the node // above. if so, update it and repeat. { for(int j=length; j>0; j--){ if((marker[j]&1)!=0){ // have to jump branches if(j==1) marker[1]++; else marker[j]=marker[j-1]<<1; break; // invariant says next upper marker would already // have been moved if it was on the same path } marker[j]++; } } // prune the tree; the implicit invariant says all the longer // markers were dangling from our just-taken node. Dangle them // from our *new* node. for(int j=length+1; j<33; j++){ if((marker[j]>>>1)==entry){ entry=marker[j]; marker[j]=marker[j-1]<<1; } else{ break; } } } } // bitreverse the words because our bitwise packer/unpacker is LSb // endian for(int i=0; i<n; i++){ int temp=0; for(int j=0; j<l[i]; j++){ temp<<=1; temp|=(r[i]>>>j)&1; } r[i]=temp; } return (r); } // build the decode helper tree from the codewords DecodeAux make_decode_tree(){ int top=0; DecodeAux t=new DecodeAux(); int[] ptr0=t.ptr0=new int[entries*2]; int[] ptr1=t.ptr1=new int[entries*2]; int[] codelist=make_words(c.lengthlist, c.entries); if(codelist==null) return (null); t.aux=entries*2; for(int i=0; i<entries; i++){ if(c.lengthlist[i]>0){ int ptr=0; int j; for(j=0; j<c.lengthlist[i]-1; j++){ int bit=(codelist[i]>>>j)&1; if(bit==0){ if(ptr0[ptr]==0){ ptr0[ptr]=++top; } ptr=ptr0[ptr]; } else{ if(ptr1[ptr]==0){ ptr1[ptr]=++top; } ptr=ptr1[ptr]; } } if(((codelist[i]>>>j)&1)==0){ ptr0[ptr]=-i; } else{ ptr1[ptr]=-i; } } } t.tabn=Util.ilog(entries)-4; if(t.tabn<5) t.tabn=5; int n=1<<t.tabn; t.tab=new int[n]; t.tabl=new int[n]; for(int i=0; i<n; i++){ int p=0; int j=0; for(j=0; j<t.tabn&&(p>0||j==0); j++){ if((i&(1<<j))!=0){ p=ptr1[p]; } else{ p=ptr0[p]; } } t.tab[i]=p; // -code t.tabl[i]=j; // length } return (t); } class DecodeAux{ int[] tab; int[] tabl; int tabn; int[] ptr0; int[] ptr1; int aux; // number of tree entries } }