/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.cassandra.service; import java.net.InetAddress; import java.util.Collection; import java.util.List; import java.util.concurrent.TimeUnit; import com.google.common.collect.Iterables; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.apache.cassandra.concurrent.Stage; import org.apache.cassandra.concurrent.StageManager; import org.apache.cassandra.config.ReadRepairDecision; import org.apache.cassandra.db.ColumnFamilyStore; import org.apache.cassandra.db.ConsistencyLevel; import org.apache.cassandra.db.ReadCommand; import org.apache.cassandra.db.SinglePartitionReadCommand; import org.apache.cassandra.db.Keyspace; import org.apache.cassandra.db.partitions.PartitionIterator; import org.apache.cassandra.exceptions.ReadFailureException; import org.apache.cassandra.exceptions.ReadTimeoutException; import org.apache.cassandra.exceptions.UnavailableException; import org.apache.cassandra.metrics.ReadRepairMetrics; import org.apache.cassandra.net.MessageOut; import org.apache.cassandra.net.MessagingService; import org.apache.cassandra.schema.SpeculativeRetryParam; import org.apache.cassandra.service.StorageProxy.LocalReadRunnable; import org.apache.cassandra.tracing.TraceState; import org.apache.cassandra.tracing.Tracing; /** * Sends a read request to the replicas needed to satisfy a given ConsistencyLevel. * * Optionally, may perform additional requests to provide redundancy against replica failure: * AlwaysSpeculatingReadExecutor will always send a request to one extra replica, while * SpeculatingReadExecutor will wait until it looks like the original request is in danger * of timing out before performing extra reads. */ public abstract class AbstractReadExecutor { private static final Logger logger = LoggerFactory.getLogger(AbstractReadExecutor.class); protected final ReadCommand command; protected final List<InetAddress> targetReplicas; protected final ReadCallback handler; protected final TraceState traceState; AbstractReadExecutor(Keyspace keyspace, ReadCommand command, ConsistencyLevel consistencyLevel, List<InetAddress> targetReplicas) { this.command = command; this.targetReplicas = targetReplicas; this.handler = new ReadCallback(new DigestResolver(keyspace, command, consistencyLevel, targetReplicas.size()), consistencyLevel, command, targetReplicas); this.traceState = Tracing.instance.get(); // Set the digest version (if we request some digests). This is the smallest version amongst all our target replicas since new nodes // knows how to produce older digest but the reverse is not true. // TODO: we need this when talking with pre-3.0 nodes. So if we preserve the digest format moving forward, we can get rid of this once // we stop being compatible with pre-3.0 nodes. int digestVersion = MessagingService.current_version; for (InetAddress replica : targetReplicas) digestVersion = Math.min(digestVersion, MessagingService.instance().getVersion(replica)); command.setDigestVersion(digestVersion); } protected void makeDataRequests(Iterable<InetAddress> endpoints) { makeRequests(command, endpoints); } protected void makeDigestRequests(Iterable<InetAddress> endpoints) { makeRequests(command.copy().setIsDigestQuery(true), endpoints); } private void makeRequests(ReadCommand readCommand, Iterable<InetAddress> endpoints) { boolean hasLocalEndpoint = false; for (InetAddress endpoint : endpoints) { if (StorageProxy.canDoLocalRequest(endpoint)) { hasLocalEndpoint = true; continue; } if (traceState != null) traceState.trace("reading {} from {}", readCommand.isDigestQuery() ? "digest" : "data", endpoint); logger.trace("reading {} from {}", readCommand.isDigestQuery() ? "digest" : "data", endpoint); MessageOut<ReadCommand> message = readCommand.createMessage(MessagingService.instance().getVersion(endpoint)); MessagingService.instance().sendRRWithFailure(message, endpoint, handler); } // We delay the local (potentially blocking) read till the end to avoid stalling remote requests. if (hasLocalEndpoint) { logger.trace("reading {} locally", readCommand.isDigestQuery() ? "digest" : "data"); StageManager.getStage(Stage.READ).maybeExecuteImmediately(new LocalReadRunnable(command, handler)); } } /** * Perform additional requests if it looks like the original will time out. May block while it waits * to see if the original requests are answered first. */ public abstract void maybeTryAdditionalReplicas(); /** * Get the replicas involved in the [finished] request. * * @return target replicas + the extra replica, *IF* we speculated. */ public abstract Collection<InetAddress> getContactedReplicas(); /** * send the initial set of requests */ public abstract void executeAsync(); /** * wait for an answer. Blocks until success or timeout, so it is caller's * responsibility to call maybeTryAdditionalReplicas first. */ public PartitionIterator get() throws ReadFailureException, ReadTimeoutException, DigestMismatchException { return handler.get(); } /** * @return an executor appropriate for the configured speculative read policy */ public static AbstractReadExecutor getReadExecutor(SinglePartitionReadCommand command, ConsistencyLevel consistencyLevel) throws UnavailableException { Keyspace keyspace = Keyspace.open(command.metadata().ksName); List<InetAddress> allReplicas = StorageProxy.getLiveSortedEndpoints(keyspace, command.partitionKey()); // 11980: Excluding EACH_QUORUM reads from potential RR, so that we do not miscount DC responses ReadRepairDecision repairDecision = consistencyLevel == ConsistencyLevel.EACH_QUORUM ? ReadRepairDecision.NONE : command.metadata().newReadRepairDecision(); List<InetAddress> targetReplicas = consistencyLevel.filterForQuery(keyspace, allReplicas, repairDecision); // Throw UAE early if we don't have enough replicas. consistencyLevel.assureSufficientLiveNodes(keyspace, targetReplicas); if (repairDecision != ReadRepairDecision.NONE) { Tracing.trace("Read-repair {}", repairDecision); ReadRepairMetrics.attempted.mark(); } ColumnFamilyStore cfs = keyspace.getColumnFamilyStore(command.metadata().cfId); SpeculativeRetryParam retry = cfs.metadata.params.speculativeRetry; // Speculative retry is disabled *OR* there are simply no extra replicas to speculate. // 11980: Disable speculative retry if using EACH_QUORUM in order to prevent miscounting DC responses if (retry.equals(SpeculativeRetryParam.NONE) || consistencyLevel == ConsistencyLevel.EACH_QUORUM || consistencyLevel.blockFor(keyspace) == allReplicas.size()) return new NeverSpeculatingReadExecutor(keyspace, command, consistencyLevel, targetReplicas); if (targetReplicas.size() == allReplicas.size()) { // CL.ALL, RRD.GLOBAL or RRD.DC_LOCAL and a single-DC. // We are going to contact every node anyway, so ask for 2 full data requests instead of 1, for redundancy // (same amount of requests in total, but we turn 1 digest request into a full blown data request). return new AlwaysSpeculatingReadExecutor(keyspace, cfs, command, consistencyLevel, targetReplicas); } // RRD.NONE or RRD.DC_LOCAL w/ multiple DCs. InetAddress extraReplica = allReplicas.get(targetReplicas.size()); // With repair decision DC_LOCAL all replicas/target replicas may be in different order, so // we might have to find a replacement that's not already in targetReplicas. if (repairDecision == ReadRepairDecision.DC_LOCAL && targetReplicas.contains(extraReplica)) { for (InetAddress address : allReplicas) { if (!targetReplicas.contains(address)) { extraReplica = address; break; } } } targetReplicas.add(extraReplica); if (retry.equals(SpeculativeRetryParam.ALWAYS)) return new AlwaysSpeculatingReadExecutor(keyspace, cfs, command, consistencyLevel, targetReplicas); else // PERCENTILE or CUSTOM. return new SpeculatingReadExecutor(keyspace, cfs, command, consistencyLevel, targetReplicas); } public static class NeverSpeculatingReadExecutor extends AbstractReadExecutor { public NeverSpeculatingReadExecutor(Keyspace keyspace, ReadCommand command, ConsistencyLevel consistencyLevel, List<InetAddress> targetReplicas) { super(keyspace, command, consistencyLevel, targetReplicas); } public void executeAsync() { makeDataRequests(targetReplicas.subList(0, 1)); if (targetReplicas.size() > 1) makeDigestRequests(targetReplicas.subList(1, targetReplicas.size())); } public void maybeTryAdditionalReplicas() { // no-op } public Collection<InetAddress> getContactedReplicas() { return targetReplicas; } } private static class SpeculatingReadExecutor extends AbstractReadExecutor { private final ColumnFamilyStore cfs; private volatile boolean speculated = false; public SpeculatingReadExecutor(Keyspace keyspace, ColumnFamilyStore cfs, ReadCommand command, ConsistencyLevel consistencyLevel, List<InetAddress> targetReplicas) { super(keyspace, command, consistencyLevel, targetReplicas); this.cfs = cfs; } public void executeAsync() { // if CL + RR result in covering all replicas, getReadExecutor forces AlwaysSpeculating. So we know // that the last replica in our list is "extra." List<InetAddress> initialReplicas = targetReplicas.subList(0, targetReplicas.size() - 1); if (handler.blockfor < initialReplicas.size()) { // We're hitting additional targets for read repair. Since our "extra" replica is the least- // preferred by the snitch, we do an extra data read to start with against a replica more // likely to reply; better to let RR fail than the entire query. makeDataRequests(initialReplicas.subList(0, 2)); if (initialReplicas.size() > 2) makeDigestRequests(initialReplicas.subList(2, initialReplicas.size())); } else { // not doing read repair; all replies are important, so it doesn't matter which nodes we // perform data reads against vs digest. makeDataRequests(initialReplicas.subList(0, 1)); if (initialReplicas.size() > 1) makeDigestRequests(initialReplicas.subList(1, initialReplicas.size())); } } public void maybeTryAdditionalReplicas() { // no latency information, or we're overloaded if (cfs.sampleLatencyNanos > TimeUnit.MILLISECONDS.toNanos(command.getTimeout())) return; if (!handler.await(cfs.sampleLatencyNanos, TimeUnit.NANOSECONDS)) { // Could be waiting on the data, or on enough digests. ReadCommand retryCommand = command; if (handler.resolver.isDataPresent()) retryCommand = command.copy().setIsDigestQuery(true); InetAddress extraReplica = Iterables.getLast(targetReplicas); if (traceState != null) traceState.trace("speculating read retry on {}", extraReplica); logger.trace("speculating read retry on {}", extraReplica); int version = MessagingService.instance().getVersion(extraReplica); MessagingService.instance().sendRRWithFailure(retryCommand.createMessage(version), extraReplica, handler); speculated = true; cfs.metric.speculativeRetries.inc(); } } public Collection<InetAddress> getContactedReplicas() { return speculated ? targetReplicas : targetReplicas.subList(0, targetReplicas.size() - 1); } } private static class AlwaysSpeculatingReadExecutor extends AbstractReadExecutor { private final ColumnFamilyStore cfs; public AlwaysSpeculatingReadExecutor(Keyspace keyspace, ColumnFamilyStore cfs, ReadCommand command, ConsistencyLevel consistencyLevel, List<InetAddress> targetReplicas) { super(keyspace, command, consistencyLevel, targetReplicas); this.cfs = cfs; } public void maybeTryAdditionalReplicas() { // no-op } public Collection<InetAddress> getContactedReplicas() { return targetReplicas; } @Override public void executeAsync() { makeDataRequests(targetReplicas.subList(0, targetReplicas.size() > 1 ? 2 : 1)); if (targetReplicas.size() > 2) makeDigestRequests(targetReplicas.subList(2, targetReplicas.size())); cfs.metric.speculativeRetries.inc(); } } }