/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. * * Copyright 2011 Oracle and/or its affiliates. All rights reserved. * * Oracle and Java are registered trademarks of Oracle and/or its affiliates. * Other names may be trademarks of their respective owners. * * The contents of this file are subject to the terms of either the GNU * General Public License Version 2 only ("GPL") or the Common * Development and Distribution License("CDDL") (collectively, the * "License"). You may not use this file except in compliance with the * License. You can obtain a copy of the License at * http://www.netbeans.org/cddl-gplv2.html * or nbbuild/licenses/CDDL-GPL-2-CP. See the License for the * specific language governing permissions and limitations under the * License. When distributing the software, include this License Header * Notice in each file and include the License file at * nbbuild/licenses/CDDL-GPL-2-CP. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the GPL Version 2 section of the License file that * accompanied this code. If applicable, add the following below the * License Header, with the fields enclosed by brackets [] replaced by * your own identifying information: * "Portions Copyrighted [year] [name of copyright owner]" * * If you wish your version of this file to be governed by only the CDDL * or only the GPL Version 2, indicate your decision by adding * "[Contributor] elects to include this software in this distribution * under the [CDDL or GPL Version 2] license." If you do not indicate a * single choice of license, a recipient has the option to distribute * your version of this file under either the CDDL, the GPL Version 2 or * to extend the choice of license to its licensees as provided above. * However, if you add GPL Version 2 code and therefore, elected the GPL * Version 2 license, then the option applies only if the new code is * made subject to such option by the copyright holder. * * Contributor(s): * * Portions Copyrighted 2011 Sun Microsystems, Inc. */ package org.netbeans.lib.profiler.heap; import java.util.Arrays; import java.util.Map; /** * Map for longs. IdentityHashMap was used as template. * Zero cannot be used as key. Load factor is 3/4. * @author Tomas Hurka */ class LongHashMap { /** * The initial capacity used by the no-args constructor. * MUST be a power of two. */ private static final int DEFAULT_CAPACITY = 32; /** * The minimum capacity, used if a lower value is implicitly specified * by either of the constructors with arguments. The value 4 corresponds * to an expected maximum size of 2, given a load factor of 2/3. * MUST be a power of two. */ private static final int MINIMUM_CAPACITY = 4; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<29. */ private static final int MAXIMUM_CAPACITY = 1 << 29; /** * The table, resized as necessary. Length MUST always be a power of two. */ private transient long[] table; /** * The number of key-value mappings contained in this identity hash map. * * @serial */ private int size; /** * The number of modifications, to support fast-fail iterators */ @SuppressWarnings("unused") private transient int modCount; /** * The next size value at which to resize (capacity * load factor). */ private transient int threshold; /** * Constructs a new, empty identity hash map with a default expected * maximum size. */ LongHashMap() { init(DEFAULT_CAPACITY); } /** * Constructs a new, empty map with the specified expected maximum size. * Putting more than the expected number of key-value mappings into * the map may cause the internal data structure to grow, which may be * somewhat time-consuming. * * @param expectedMaxSize the expected maximum size of the map * @throws IllegalArgumentException if <tt>expectedMaxSize</tt> is negative */ LongHashMap(int expectedMaxSize) { if (expectedMaxSize < 0) throw new IllegalArgumentException("expectedMaxSize is negative: " + expectedMaxSize); init(capacity(expectedMaxSize)); } /** * Returns the appropriate capacity for the specified expected maximum * size. Returns the smallest power of two between MINIMUM_CAPACITY * and MAXIMUM_CAPACITY, inclusive, that is greater than * (4 * expectedMaxSize)/3, if such a number exists. Otherwise * returns MAXIMUM_CAPACITY. If (4 * expectedMaxSize)/3 is negative, it * is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned. */ private int capacity(int expectedMaxSize) { // Compute min capacity for expectedMaxSize given a load factor of 3/4 int minCapacity = (4 * expectedMaxSize)/3; // Compute the appropriate capacity int result; if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) { result = MAXIMUM_CAPACITY; } else { result = MINIMUM_CAPACITY; while (result < minCapacity) result <<= 1; } return result; } /** * Initializes object to be an empty map with the specified initial * capacity, which is assumed to be a power of two between * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive. */ private void init(int initCapacity) { assert (initCapacity & -initCapacity) == initCapacity; // power of 2 assert initCapacity >= MINIMUM_CAPACITY; assert initCapacity <= MAXIMUM_CAPACITY; threshold = (initCapacity * 3)/ 4; table = new long[2 * initCapacity]; } /** * Returns the number of key-value mappings in this identity hash map. * * @return the number of key-value mappings in this map */ int size() { return size; } /** * Returns <tt>true</tt> if this identity hash map contains no key-value * mappings. * * @return <tt>true</tt> if this identity hash map contains no key-value * mappings */ boolean isEmpty() { return size == 0; } /** * Returns index for Object x. */ private static int hash(long x, int length) { int h = (int)(x ^ (x >>> 32)); // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); h ^= (h >>> 7) ^ (h >>> 4); return (h) & (length - 2); } /** * Circularly traverses table of size len. */ private static int nextKeyIndex(int i, int len) { return (i + 2 < len ? i + 2 : 0); } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key == k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * <p>A return value of {@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ long get(long key) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) return tab[i + 1]; if (item == 0) return 0; i = nextKeyIndex(i, len); } } /** * Tests whether the specified object reference is a key in this identity * hash map. * * @param key possible key * @return <code>true</code> if the specified object reference is a key * in this map * @see #containsValue(Object) */ boolean containsKey(long key) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) return true; if (item == 0) return false; i = nextKeyIndex(i, len); } } /** * Tests whether the specified object reference is a value in this identity * hash map. * * @param value value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the * specified object reference * @see #containsKey(Object) */ boolean containsValue(long value) { long[] tab = table; for (int i = 1; i < tab.length; i += 2) if (tab[i] == value && tab[i - 1] != 0) return true; return false; } /** * Tests if the specified key-value mapping is in the map. * * @param key possible key * @param value possible value * @return <code>true</code> if and only if the specified key-value * mapping is in the map */ private boolean containsMapping(long key, long value) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) return tab[i + 1] == value; if (item == 0) return false; i = nextKeyIndex(i, len); } } /** * Associates the specified value with the specified key in this identity * hash map. If the map previously contained a mapping for the key, the * old value is replaced. * * @param key the key with which the specified value is to be associated * @param value the value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt>. * (A <tt>null</tt> return can also indicate that the map * previously associated <tt>null</tt> with <tt>key</tt>.) * @see Object#equals(Object) * @see #get(Object) * @see #containsKey(Object) */ long put(long key, long value) { assert key != 0; long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); long item; while ( (item = tab[i]) != 0) { if (item == k) { long oldValue = tab[i + 1]; tab[i + 1] = value; return oldValue; } i = nextKeyIndex(i, len); } modCount++; tab[i] = k; tab[i + 1] = value; if (++size >= threshold) resize(len); // len == 2 * current capacity. return 0; } /** * Resize the table to hold given capacity. * * @param newCapacity the new capacity, must be a power of two. */ private void resize(int newCapacity) { // assert (newCapacity & -newCapacity) == newCapacity; // power of 2 int newLength = newCapacity * 2; long[] oldTable = table; int oldLength = oldTable.length; if (oldLength == 2*MAXIMUM_CAPACITY) { // can't expand any further if (threshold == MAXIMUM_CAPACITY-1) throw new IllegalStateException("Capacity exhausted."); threshold = MAXIMUM_CAPACITY-1; // Gigantic map! return; } if (oldLength >= newLength) return; long[] newTable = new long[newLength]; threshold = (newCapacity * 3) / 4; for (int j = 0; j < oldLength; j += 2) { long key = oldTable[j]; if (key != 0) { long value = oldTable[j+1]; int i = hash(key, newLength); while (newTable[i] != 0) i = nextKeyIndex(i, newLength); newTable[i] = key; newTable[i + 1] = value; } } table = newTable; } /** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * * @param m mappings to be stored in this map * @throws NullPointerException if the specified map is null */ void putAll(Map<Long,Long> m) { int n = m.size(); if (n == 0) return; if (n > threshold) // conservatively pre-expand resize(capacity(n)); for (Map.Entry<Long,Long> e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * Removes the mapping for this key from this map if present. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt>. * (A <tt>null</tt> return can also indicate that the map * previously associated <tt>null</tt> with <tt>key</tt>.) */ long remove(long key) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) { modCount++; size--; long oldValue = tab[i + 1]; tab[i + 1] = 0; tab[i] = 0; closeDeletion(i); return oldValue; } if (item == 0) return -1; i = nextKeyIndex(i, len); } } /** * Removes the specified key-value mapping from the map if it is present. * * @param key possible key * @param value possible value * @return <code>true</code> if and only if the specified key-value * mapping was in the map */ @SuppressWarnings("unused") private boolean removeMapping(long key, long value) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) { if (tab[i + 1] != value) return false; modCount++; size--; tab[i] = 0; tab[i + 1] = 0; closeDeletion(i); return true; } if (item == 0) return false; i = nextKeyIndex(i, len); } } /** * Rehash all possibly-colliding entries following a * deletion. This preserves the linear-probe * collision properties required by get, put, etc. * * @param d the index of a newly empty deleted slot */ private void closeDeletion(int d) { // Adapted from Knuth Section 6.4 Algorithm R long[] tab = table; int len = tab.length; // Look for items to swap into newly vacated slot // starting at index immediately following deletion, // and continuing until a null slot is seen, indicating // the end of a run of possibly-colliding keys. long item; for (int i = nextKeyIndex(d, len); (item = tab[i]) != 0; i = nextKeyIndex(i, len) ) { // The following test triggers if the item at slot i (which // hashes to be at slot r) should take the spot vacated by d. // If so, we swap it in, and then continue with d now at the // newly vacated i. This process will terminate when we hit // the null slot at the end of this run. // The test is messy because we are using a circular table. int r = hash(item, len); if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) { tab[d] = item; tab[d + 1] = tab[i + 1]; tab[i] = 0; tab[i + 1] = 0; d = i; } } } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ void clear() { modCount++; long[] tab = table; Arrays.fill(tab, 0); size = 0; } /** * Compares the specified object with this map for equality. Returns * <tt>true</tt> if the given object is also a map and the two maps * represent identical object-reference mappings. More formally, this * map is equal to another map <tt>m</tt> if and only if * <tt>this.entrySet().equals(m.entrySet())</tt>. * * <p><b>Owing to the reference-equality-based semantics of this map it is * possible that the symmetry and transitivity requirements of the * <tt>Object.equals</tt> contract may be violated if this map is compared * to a normal map. However, the <tt>Object.equals</tt> contract is * guaranteed to hold among <tt>LongHashMap</tt> instances.</b> * * @param o object to be compared for equality with this map * @return <tt>true</tt> if the specified object is equal to this map * @see Object#equals(Object) */ @Override public boolean equals(Object o) { if (o == this) { return true; } else if (o instanceof LongHashMap) { LongHashMap m = (LongHashMap) o; if (m.size() != size) return false; long[] tab = m.table; for (int i = 0; i < tab.length; i+=2) { long k = tab[i]; if (k != 0 && !containsMapping(k, tab[i + 1])) return false; } return true; } else if (o instanceof Map) { // Map m = (Map)o; return false; } else { return false; // o is not a Map } } /** * Returns the hash code value for this map. The hash code of a map is * defined to be the sum of the hash codes of each entry in the map's * <tt>entrySet()</tt> view. This ensures that <tt>m1.equals(m2)</tt> * implies that <tt>m1.hashCode()==m2.hashCode()</tt> for any two * <tt>IdentityHashMap</tt> instances <tt>m1</tt> and <tt>m2</tt>, as * required by the general contract of {@link Object#hashCode}. * * <p><b>Owing to the reference-equality-based semantics of the * <tt>Map.Entry</tt> instances in the set returned by this map's * <tt>entrySet</tt> method, it is possible that the contractual * requirement of <tt>Object.hashCode</tt> mentioned in the previous * paragraph will be violated if one of the two objects being compared is * an <tt>LongHashMap</tt> instance and the other is a normal map.</b> * * @return the hash code value for this map * @see Object#equals(Object) * @see #equals(Object) */ @Override public int hashCode() { int result = 0; long[] tab = table; for (int i = 0; i < tab.length; i +=2) { long key = tab[i]; if (key != 0) { long k = key; result += hash(k,tab.length) ^ hash(tab[i + 1],tab.length); } } return result; } }