/* * #%L * Wisdom-Framework * %% * Copyright (C) 2013 - 2014 Wisdom Framework * %% * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * #L% */ package test.frames; import org.apache.commons.codec.DecoderException; import org.apache.commons.codec.binary.Base64; import org.apache.commons.codec.binary.Hex; import org.apache.felix.ipojo.annotations.Component; import org.apache.felix.ipojo.annotations.Instantiate; import org.apache.felix.ipojo.annotations.Provides; import javax.crypto.*; import javax.crypto.spec.IvParameterSpec; import javax.crypto.spec.PBEKeySpec; import javax.crypto.spec.SecretKeySpec; import java.nio.charset.Charset; import java.security.InvalidAlgorithmParameterException; import java.security.InvalidKeyException; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.security.spec.InvalidKeySpecException; import java.security.spec.KeySpec; /** * This component triggers some interesting frames issue. */ @Component @Provides @Instantiate(name = "crypto") public class CryptoServiceSingleton { public static final String AES_CBC_ALGORITHM = "AES/CBC/PKCS5Padding"; public static final String AES_ECB_ALGORITHM = "AES"; private static final Charset UTF_8 = Charset.defaultCharset(); public static final String HMAC_SHA_1 = "HmacSHA1"; public static final String PBKDF_2_WITH_HMAC_SHA_1 = "PBKDF2WithHmacSHA1"; private int keySize; private int iterationCount; private Hash defaultHash; private final String secret; public CryptoServiceSingleton(String secret, Hash defaultHash, Integer keySize, Integer iterationCount) { this.secret = secret; this.defaultHash = defaultHash; this.keySize = keySize; this.iterationCount = iterationCount; } public CryptoServiceSingleton() { this( "I;>qOs/VgFe?l@>Kn/RGa0p9b1ji?Kg7uhjAPHdIO8>@<em_AFs[BAMUQ0D]eOLV", Hash.valueOf("MD5"), 128, 20); } /** * Generate the AES key from the salt and the private key. * * @param salt the salt (hexadecimal) * @param privateKey the private key * @return the generated key. */ private SecretKey generateAESKey(String privateKey, String salt) { try { byte[] raw = Hex.decodeHex(salt.toCharArray()); KeySpec spec = new PBEKeySpec(privateKey.toCharArray(), raw, iterationCount, keySize); SecretKeyFactory factory = SecretKeyFactory.getInstance(PBKDF_2_WITH_HMAC_SHA_1); return new SecretKeySpec(factory.generateSecret(spec).getEncoded(), AES_ECB_ALGORITHM); } catch (DecoderException e) { throw new IllegalStateException(e); } catch ( NoSuchAlgorithmException e) { throw new IllegalStateException(e); } catch (InvalidKeySpecException e) { throw new IllegalStateException(e); } } /** * Encrypt a String with the AES encryption advanced using 'AES/CBC/PKCS5Padding'. Unlike the regular * encode/decode AES method using ECB (Electronic Codebook), it uses Cipher-block chaining (CBC). The salt must be * valid hexadecimal String. This method uses parts of the application secret as private key and initialization * vector. * * @param value The message to encrypt * @param salt The salt (hexadecimal String) * @return encrypted String encoded using Base64 */ public String encryptAESWithCBC(String value, String salt) { return encryptAESWithCBC(value, getSecretPrefix(), salt, getDefaultIV()); } /** * Encrypt a String with the AES encryption advanced using 'AES/CBC/PKCS5Padding'. Unlike the regular * encode/decode AES method using ECB (Electronic Codebook), it uses Cipher-block chaining (CBC). The private key * must have a length of 16 bytes, the salt and initialization vector must be valid hex Strings. * * @param value The message to encrypt * @param privateKey The private key * @param salt The salt (hexadecimal String) * @param iv The initialization vector (hexadecimal String) * @return encrypted String encoded using Base64 */ public String encryptAESWithCBC(String value, String privateKey, String salt, String iv) { SecretKey genKey = generateAESKey(privateKey, salt); byte[] encrypted = doFinal(Cipher.ENCRYPT_MODE, genKey, iv, value.getBytes(UTF_8)); return new String(Base64.encodeBase64(encrypted), UTF_8); } /** * Decrypt a String with the AES encryption advanced using 'AES/CBC/PKCS5Padding'. Unlike the regular * encode/decode AES method using ECB (Electronic Codebook), it uses Cipher-block chaining (CBC). The salt and * initialization vector must be valid hex Strings. This method use parts of the application secret as private * key and the default initialization vector. * * @param value An encrypted String encoded using Base64. * @param salt The salt (hexadecimal String) * @return The decrypted String */ public String decryptAESWithCBC(String value, String salt) { return decryptAESWithCBC(value, getSecretPrefix(), salt, getDefaultIV()); } /** * Decrypt a String with the AES encryption advanced using 'AES/CBC/PKCS5Padding'. Unlike the regular * encode/decode AES method using ECB (Electronic Codebook), it uses Cipher-block chaining (CBC). The private key * must have a length of 16 bytes, the salt and initialization vector must be valid hexadecimal Strings. * * @param value An encrypted String encoded using Base64. * @param privateKey The private key * @param salt The salt (hexadecimal String) * @param iv The initialization vector (hexadecimal String) * @return The decrypted String */ public String decryptAESWithCBC(String value, String privateKey, String salt, String iv) { SecretKey key = generateAESKey(privateKey, salt); byte[] decrypted = doFinal(Cipher.DECRYPT_MODE, key, iv, decodeBase64(value)); return new String(decrypted, UTF_8); } /** * Utility method encrypting/decrypting the given message. * The sense of the operation is specified using the `encryptMode` parameter. * * @param encryptMode encrypt or decrypt mode ({@link javax.crypto.Cipher#DECRYPT_MODE} or * {@link javax.crypto.Cipher#ENCRYPT_MODE}). * @param generatedKey the generated key * @param vector the initialization vector * @param message the plain/cipher text to encrypt/decrypt * @return the encrypted or decrypted message */ private byte[] doFinal(int encryptMode, SecretKey generatedKey, String vector, byte[] message) { try { byte[] raw = Hex.decodeHex(vector.toCharArray()); Cipher cipher = Cipher.getInstance(AES_CBC_ALGORITHM); cipher.init(encryptMode, generatedKey, new IvParameterSpec(raw)); return cipher.doFinal(message); } catch (Exception e) { throw new IllegalStateException(e); } } /** * Sign a message using the application secret key (HMAC-SHA1). */ public String sign(String message) { return sign(message, secret.getBytes(UTF_8)); } /** * Sign a message with a key. * * @param message The message to sign * @param key The key to use * @return The signed message (in hexadecimal) */ public String sign(String message, byte[] key) { try { // Get an hmac_sha1 key from the raw key bytes SecretKeySpec signingKey = new SecretKeySpec(key, HMAC_SHA_1); // Get an hmac_sha1 Mac instance and initialize with the signing key Mac mac = Mac.getInstance(HMAC_SHA_1); mac.init(signingKey); // Compute the hmac on input data bytes byte[] rawHmac = mac.doFinal(message.getBytes(UTF_8)); // Convert raw bytes to Hex byte[] hexBytes = new Hex().encode(rawHmac); // Covert array of Hex bytes to a String return new String(hexBytes, UTF_8); } catch (Exception e) { throw new IllegalArgumentException(e); } } /** * Create a hash using the default hashing algorithm. * * @param input The password * @return The password hash */ public String hash(String input) { return hash(input, defaultHash); } /** * Create a hash using specific hashing algorithm. * * @param input The password * @param hashType The hashing algorithm * @return The password hash */ public String hash(String input, Hash hashType) { try { MessageDigest m = MessageDigest.getInstance(hashType.toString()); byte[] out = m.digest(input.getBytes(UTF_8)); return new String(Base64.encodeBase64(out), UTF_8); } catch (NoSuchAlgorithmException e) { throw new IllegalArgumentException(e); } } /** * Encrypt a String with the AES standard encryption (using the ECB mode) using the default secret (the * application secret). * * @param value The String to encrypt * @return An hexadecimal encrypted string */ public String encryptAES(String value) { return encryptAES(value, getSecretPrefix()); } /** * Encrypt a String with the AES standard encryption (using the ECB mode). Private key must have a length of 16 bytes. * * @param value The String to encrypt * @param privateKey The key used to encrypt * @return An hexadecimal encrypted string */ public String encryptAES(String value, String privateKey) { try { byte[] raw = privateKey.getBytes(UTF_8); SecretKeySpec skeySpec = new SecretKeySpec(raw, AES_ECB_ALGORITHM); Cipher cipher = Cipher.getInstance(AES_ECB_ALGORITHM); cipher.init(Cipher.ENCRYPT_MODE, skeySpec); return Hex.encodeHexString(cipher.doFinal(value.getBytes(UTF_8))); } catch (Exception e) { throw new IllegalStateException(e); } } /** * Decrypt a String with the standard AES encryption (using the ECB mode) using the default secret (the * application secret). * * @param value An hexadecimal encrypted string * @return The decrypted String */ public String decryptAES(String value) { return decryptAES(value, getSecretPrefix()); } /** * Decrypt a String with the standard AES encryption (using the ECB mode). Private key must have a length of 16 * bytes. * * @param value An hexadecimal encrypted string * @param privateKey The key used to encrypt * @return The decrypted String */ public String decryptAES(String value, String privateKey) { try { byte[] raw = privateKey.getBytes(UTF_8); SecretKeySpec skeySpec = new SecretKeySpec(raw, AES_ECB_ALGORITHM); Cipher cipher = Cipher.getInstance(AES_ECB_ALGORITHM); cipher.init(Cipher.DECRYPT_MODE, skeySpec); return new String(cipher.doFinal(Hex.decodeHex(value.toCharArray())), UTF_8); } catch (Exception e) { throw new IllegalStateException(e); } } /** * Gets the 16 first characters of the application secret. * * @return the secret prefix. */ private String getSecretPrefix() { return secret.substring(0, 16); } /** * Gets a segment of the application secret of 16 characters and encoded them in hexadecimal. The segment * contains from the 16th to the 32th characters from the application secret (16 characters). The extracted * segment is encoded in hexadecimal * * @return the default initialization vector. */ private String getDefaultIV() { return String.valueOf(Hex.encodeHex(secret.substring(16, 32).getBytes(UTF_8))); } /** * Sign a token. This produces a new token, that has this token signed with a nonce. * <p/> * This primarily exists to defeat the BREACH vulnerability, as it allows the token to effectively be random per * request, without actually changing the value. * * @param token The token to sign * @return The signed token */ public String signToken(String token) { long nonce = System.currentTimeMillis(); String joined = nonce + "-" + token; return sign(joined) + "-" + joined; } /** * Extract a signed token that was signed by {@link #signToken(String)}. * * @param token The signed token to extract. * @return The verified raw token, or null if the token isn't valid. */ public String extractSignedToken(String token) { String[] chunks = token.split("-", 3); String signature = chunks[0]; String nonce = chunks[1]; String raw = chunks[2]; if (constantTimeEquals(signature, sign(nonce + "-" + raw))) { return raw; } else { return null; } } /** * Constant time equals method. * <p/> * Given a length that both Strings are equal to, this method will always run in constant time. * This prevents timing attacks. */ private boolean constantTimeEquals(String a, String b) { if (a.length() != b.length()) { return false; } else { int equal = 0; for (int i = 0; i < a.length(); i++) { equal = equal | a.charAt(i) ^ b.charAt(i); } return equal == 0; } } /** * Encode binary data to base64. * * @param value The binary data * @return The base64 encoded String */ public String encodeBase64(byte[] value) { return new String(Base64.encodeBase64(value), UTF_8); } /** * Decode a base64 value. * * @param value The base64 encoded String * @return decoded binary data */ public byte[] decodeBase64(String value) { return Base64.decodeBase64(value.getBytes(UTF_8)); } /** * Build an hexadecimal MD5 hash for a String. * * @param value The String to hash * @return An hexadecimal Hash */ public String hexMD5(String value) { try { MessageDigest messageDigest = MessageDigest.getInstance(Hash.MD5.toString()); messageDigest.reset(); messageDigest.update(value.getBytes(UTF_8)); byte[] digest = messageDigest.digest(); return String.valueOf(Hex.encodeHex(digest)); } catch (Exception ex) { throw new RuntimeException(ex); } } /** * Build an hexadecimal SHA1 hash for a String. * * @param value The String to hash * @return An hexadecimal Hash */ public String hexSHA1(String value) { try { MessageDigest md; md = MessageDigest.getInstance(Hash.SHA1.toString()); md.update(value.getBytes(UTF_8)); byte[] digest = md.digest(); return String.valueOf(Hex.encodeHex(digest)); } catch (Exception ex) { throw new RuntimeException(ex); } } }