/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package test; import java.util.Random; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicReference; import org.apache.felix.dm.Logger; import org.apache.felix.dm.impl.SerialExecutor; import org.junit.Assert; import org.junit.Test; /** * Validates SerialExecutor used by DM implementation. * * @author <a href="mailto:dev@felix.apache.org">Felix Project Team</a> */ public class SerialExecutorTest extends TestBase { final Random m_rnd = new Random(); final int TESTS = 100000; @Test public void testSerialExecutor() { info("Testing serial executor"); int cores = Math.max(10, Runtime.getRuntime().availableProcessors()); ExecutorService threadPool = null; try { threadPool = Executors.newFixedThreadPool(cores); final SerialExecutor serial = new SerialExecutor(new Logger(null)); long timeStamp = System.currentTimeMillis(); for (int i = 0; i < TESTS; i++) { final CountDownLatch latch = new CountDownLatch(cores * 2 /* each task reexecutes itself one time */); final SerialTask task = new SerialTask(serial, latch); for (int j = 0; j < cores; j ++) { threadPool.execute(new Runnable() { public void run() { serial.execute(task); } }); } Assert.assertTrue("Test " + i + " did not terminate timely", latch.await(20000, TimeUnit.MILLISECONDS)); } long now = System.currentTimeMillis(); System.out.println("Performed " + TESTS + " tests in " + (now - timeStamp) + " ms."); timeStamp = now; } catch (Throwable t) { t.printStackTrace(); Assert.fail("Test failed: " + t.getMessage()); } finally { if (threadPool != null) { shutdown(threadPool); } } } void shutdown(ExecutorService exec) { exec.shutdown(); try { exec.awaitTermination(5, TimeUnit.SECONDS); } catch (InterruptedException e) { } } class SerialTask implements Runnable { final AtomicReference<Thread> m_executingThread = new AtomicReference<Thread>(); final CountDownLatch m_latch; private boolean m_firstExecution; private final SerialExecutor m_exec; SerialTask(SerialExecutor exec, CountDownLatch latch) { m_latch = latch; m_exec = exec; m_firstExecution = true; } public void run() { Thread self = Thread.currentThread(); if (m_firstExecution) { // The first time we are executed, the previous executing thread stored in our m_executingThread should be null if (!m_executingThread.compareAndSet(null, self)) { System.out.println("detected concurrent call to SerialTask: currThread=" + self + ", other executing thread=" + m_executingThread); return; } } else { // The second time we are executed, the previous executing thread stored in our m_executingThread should be // the current running thread. if (m_executingThread.get() != self) { System.out.println("expect to execute reentrant tasks in same thread, but current thread=" + self + ", while expected is " + m_executingThread); return; } } if (m_firstExecution) { m_firstExecution = false; m_exec.execute(this); // Our run method must be called immediately } else { if (! m_executingThread.compareAndSet(self, null)) { System.out.println("detected concurrent call to SerialTask: currThread=" + self + ", other executing thread=" + m_executingThread); return; } m_firstExecution = true; } m_latch.countDown(); } } }