package com.mxgraph.layout; import java.util.HashSet; import java.util.List; import java.util.Set; import com.mxgraph.model.mxGeometry; import com.mxgraph.model.mxIGraphModel; import com.mxgraph.util.mxRectangle; import com.mxgraph.view.mxGraph; public class mxCompactTreeLayout extends mxGraphLayout { /** * Specifies the orientation of the layout. Default is true. */ protected boolean horizontal; /** * Specifies if edge directions should be inverted. Default is false. */ protected boolean invert; /** * If the parent should be resized to match the width/height of the * tree. Default is true. */ protected boolean resizeParent = true; /** * Specifies if the tree should be moved to the top, left corner * if it is inside a top-level layer. Default is true. */ protected boolean moveTree = true; /** * Specifies if all edge points of traversed edges should be removed. * Default is true. */ protected boolean resetEdges = true; /** * Holds the levelDistance. Default is 10. */ protected int levelDistance = 10; /** * Holds the nodeDistance. Default is 20. */ protected int nodeDistance = 20; /** * * @param graph */ public mxCompactTreeLayout(mxGraph graph) { this(graph, true); } /** * * @param graph * @param horizontal */ public mxCompactTreeLayout(mxGraph graph, boolean horizontal) { this(graph, horizontal, false); } /** * * @param graph * @param horizontal * @param invert */ public mxCompactTreeLayout(mxGraph graph, boolean horizontal, boolean invert) { super(graph); this.horizontal = horizontal; this.invert = invert; } /** * Returns a boolean indicating if the given <mxCell> should be ignored as a * vertex. This returns true if the cell has no connections. * * @param vertex Object that represents the vertex to be tested. * @return Returns true if the vertex should be ignored. */ public boolean isVertexIgnored(Object vertex) { return super.isVertexIgnored(vertex) || graph.getConnections(vertex).length == 0; } /** * @return the horizontal */ public boolean isHorizontal() { return horizontal; } /** * @param horizontal the horizontal to set */ public void setHorizontal(boolean horizontal) { this.horizontal = horizontal; } /** * @return the invert */ public boolean isInvert() { return invert; } /** * @param invert the invert to set */ public void setInvert(boolean invert) { this.invert = invert; } /** * @return the resizeParent */ public boolean isResizeParent() { return resizeParent; } /** * @param resizeParent the resizeParent to set */ public void setResizeParent(boolean resizeParent) { this.resizeParent = resizeParent; } /** * @return the moveTree */ public boolean isMoveTree() { return moveTree; } /** * @param moveTree the moveTree to set */ public void setMoveTree(boolean moveTree) { this.moveTree = moveTree; } /** * @return the resetEdges */ public boolean isResetEdges() { return resetEdges; } /** * @param resetEdges the resetEdges to set */ public void setResetEdges(boolean resetEdges) { this.resetEdges = resetEdges; } /** * @return the levelDistance */ public int getLevelDistance() { return levelDistance; } /** * @param levelDistance the levelDistance to set */ public void setLevelDistance(int levelDistance) { this.levelDistance = levelDistance; } /** * @return the nodeDistance */ public int getNodeDistance() { return nodeDistance; } /** * @param nodeDistance the nodeDistance to set */ public void setNodeDistance(int nodeDistance) { this.nodeDistance = nodeDistance; } /* * (non-Javadoc) * @see com.mxgraph.layout.mxIGraphLayout#execute(java.lang.Object) */ public void execute(Object parent) { execute(parent, null); } /** * Implements <mxGraphLayout.execute>. * * If the parent has any connected edges, then it is used as the root of * the tree. Else, <mxGraph.findTreeRoots> will be used to find a suitable * root node within the set of children of the given parent. */ public void execute(Object parent, Object root) { mxIGraphModel model = graph.getModel(); if (root == null) { // Takes the parent as the root if it has outgoing edges if (graph.getEdges(parent, model.getParent(parent), invert, !invert, false).length > 0) { root = parent; } // Tries to find a suitable root in the parent's // children else { List<Object> roots = graph.findTreeRoots(parent, true, invert); if (roots.size() > 0) { for (int i = 0; i < roots.size(); i++) { if (!isVertexIgnored(roots.get(i)) && graph.getEdges(roots.get(i), null, invert, !invert, false).length > 0) { root = roots.get(i); break; } } } } } if (root != null) { parent = model.getParent(root); model.beginUpdate(); try { TreeNode node = dfs(root, parent, null); if (node != null) { layout(node); double x0 = graph.getGridSize(); double y0 = x0; if (!moveTree || model.getParent(parent) == model.getRoot()) { mxGeometry g = model.getGeometry(root); if (g != null) { x0 = g.getX(); y0 = g.getY(); } } mxRectangle bounds = null; if (horizontal) { bounds = horizontalLayout(node, x0, y0, null); } else { bounds = verticalLayout(node, null, x0, y0, null); } if (bounds != null) { double dx = 0; double dy = 0; if (bounds.getX() < 0) { dx = Math.abs(x0 - bounds.getX()); } if (bounds.getY() < 0) { dy = Math.abs(y0 - bounds.getY()); } if (parent != null) { mxRectangle size = graph.getStartSize(parent); dx += size.getWidth(); dy += size.getHeight(); // Resize parent swimlane if (resizeParent && !graph.isCellCollapsed(parent)) { mxGeometry g = model.getGeometry(parent); if (g != null) { double width = bounds.getWidth() + size.getWidth() - bounds.getX() + 2 * x0; double height = bounds.getHeight() + size.getHeight() - bounds.getY() + 2 * y0; g = (mxGeometry) g.clone(); if (g.getWidth() > width) { dx += (g.getWidth() - width) / 2; } else { g.setWidth(width); } if (g.getHeight() > height) { if (horizontal) { dy += (g.getHeight() - height) / 2; } } else { g.setHeight(height); } model.setGeometry(parent, g); } } } moveNode(node, dx, dy); } } } finally { model.endUpdate(); } } } /** * Moves the specified node and all of its children by the given amount. */ protected void moveNode(TreeNode node, double dx, double dy) { node.x += dx; node.y += dy; apply(node, null); TreeNode child = node.child; while (child != null) { moveNode(child, dx, dy); child = child.next; } } /** * Does a depth first search starting at the specified cell. * Makes sure the specified swimlane is never left by the * algorithm. */ protected TreeNode dfs(Object cell, Object parent, Set<Object> visited) { if (visited == null) { visited = new HashSet<Object>(); } TreeNode node = null; if (cell != null && !visited.contains(cell) && !isVertexIgnored(cell)) { visited.add(cell); node = createNode(cell); mxIGraphModel model = graph.getModel(); TreeNode prev = null; Object[] out = graph.getEdges(cell, parent, invert, !invert, false); for (int i = 0; i < out.length; i++) { Object edge = out[i]; if (!isEdgeIgnored(edge)) { // Resets the points on the traversed edge if (resetEdges) { setEdgePoints(edge, null); } // Checks if terminal in same swimlane Object target = graph.getView().getVisibleTerminal(edge, invert); TreeNode tmp = dfs(target, parent, visited); if (tmp != null && model.getGeometry(target) != null) { if (prev == null) { node.child = tmp; } else { prev.next = tmp; } prev = tmp; } } } } return node; } /** * Starts the actual compact tree layout algorithm * at the given node. */ protected void layout(TreeNode node) { if (node != null) { TreeNode child = node.child; while (child != null) { layout(child); child = child.next; } if (node.child != null) { attachParent(node, join(node)); } else { layoutLeaf(node); } } } /** * */ protected mxRectangle horizontalLayout(TreeNode node, double x0, double y0, mxRectangle bounds) { node.x += x0 + node.offsetX; node.y += y0 + node.offsetY; bounds = apply(node, bounds); TreeNode child = node.child; if (child != null) { bounds = horizontalLayout(child, node.x, node.y, bounds); double siblingOffset = node.y + child.offsetY; TreeNode s = child.next; while (s != null) { bounds = horizontalLayout(s, node.x + child.offsetX, siblingOffset, bounds); siblingOffset += s.offsetY; s = s.next; } } return bounds; } /** * */ protected mxRectangle verticalLayout(TreeNode node, Object parent, double x0, double y0, mxRectangle bounds) { node.x += x0 + node.offsetY; node.y += y0 + node.offsetX; bounds = apply(node, bounds); TreeNode child = node.child; if (child != null) { bounds = verticalLayout(child, node, node.x, node.y, bounds); double siblingOffset = node.x + child.offsetY; TreeNode s = child.next; while (s != null) { bounds = verticalLayout(s, node, siblingOffset, node.y + child.offsetX, bounds); siblingOffset += s.offsetY; s = s.next; } } return bounds; } /** * */ protected void attachParent(TreeNode node, double height) { double x = nodeDistance + levelDistance; double y2 = (height - node.width) / 2 - nodeDistance; double y1 = y2 + node.width + 2 * nodeDistance - height; node.child.offsetX = x + node.height; node.child.offsetY = y1; node.contour.upperHead = createLine(node.height, 0, createLine(x, y1, node.contour.upperHead)); node.contour.lowerHead = createLine(node.height, 0, createLine(x, y2, node.contour.lowerHead)); } /** * */ protected void layoutLeaf(TreeNode node) { double dist = 2 * nodeDistance; node.contour.upperTail = createLine(node.height + dist, 0, null); node.contour.upperHead = node.contour.upperTail; node.contour.lowerTail = createLine(0, -node.width - dist, null); node.contour.lowerHead = createLine(node.height + dist, 0, node.contour.lowerTail); } /** * */ protected double join(TreeNode node) { double dist = 2 * nodeDistance; TreeNode child = node.child; node.contour = child.contour; double h = child.width + dist; double sum = h; child = child.next; while (child != null) { double d = merge(node.contour, child.contour); child.offsetY = d + h; child.offsetX = 0; h = child.width + dist; sum += d + h; child = child.next; } return sum; } /** * */ protected double merge(Polygon p1, Polygon p2) { double x = 0; double y = 0; double total = 0; Polyline upper = p1.lowerHead; Polyline lower = p2.upperHead; while (lower != null && upper != null) { double d = offset(x, y, lower.dx, lower.dy, upper.dx, upper.dy); y += d; total += d; if (x + lower.dx <= upper.dx) { x += lower.dx; y += lower.dy; lower = lower.next; } else { x -= upper.dx; y -= upper.dy; upper = upper.next; } } if (lower != null) { Polyline b = bridge(p1.upperTail, 0, 0, lower, x, y); p1.upperTail = (b.next != null) ? p2.upperTail : b; p1.lowerTail = p2.lowerTail; } else { Polyline b = bridge(p2.lowerTail, x, y, upper, 0, 0); if (b.next == null) { p1.lowerTail = b; } } p1.lowerHead = p2.lowerHead; return total; } /** * */ protected double offset(double p1, double p2, double a1, double a2, double b1, double b2) { double d = 0; if (b1 <= p1 || p1 + a1 <= 0) { return 0; } double t = b1 * a2 - a1 * b2; if (t > 0) { if (p1 < 0) { double s = p1 * a2; d = s / a1 - p2; } else if (p1 > 0) { double s = p1 * b2; d = s / b1 - p2; } else { d = -p2; } } else if (b1 < p1 + a1) { double s = (b1 - p1) * a2; d = b2 - (p2 + s / a1); } else if (b1 > p1 + a1) { double s = (a1 + p1) * b2; d = s / b1 - (p2 + a2); } else { d = b2 - (p2 + a2); } if (d > 0) { return d; } return 0; } /** * */ protected Polyline bridge(Polyline line1, double x1, double y1, Polyline line2, double x2, double y2) { double dx = x2 + line2.dx - x1; double dy = 0; double s = 0; if (line2.dx == 0) { dy = line2.dy; } else { s = dx * line2.dy; dy = s / line2.dx; } Polyline r = createLine(dx, dy, line2.next); line1.next = createLine(0, y2 + line2.dy - dy - y1, r); return r; } /** * */ protected TreeNode createNode(Object cell) { TreeNode node = new TreeNode(cell); mxRectangle geo = getVertexBounds(cell); if (geo != null) { if (horizontal) { node.width = geo.getHeight(); node.height = geo.getWidth(); } else { node.width = geo.getWidth(); node.height = geo.getHeight(); } } return node; } /** * */ protected mxRectangle apply(TreeNode node, mxRectangle bounds) { mxRectangle g = graph.getModel().getGeometry(node.cell); if (node.cell != null && g != null) { if (isVertexMovable(node.cell)) { g = setVertexLocation(node.cell, node.x, node.y); } if (bounds == null) { bounds = new mxRectangle(g.getX(), g.getY(), g.getWidth(), g .getHeight()); } else { bounds = new mxRectangle(Math.min(bounds.getX(), g.getX()), Math.min(bounds.getY(), g.getY()), Math.max(bounds .getX() + bounds.getWidth(), g.getX() + g.getWidth()), Math.max(bounds.getY() + bounds.getHeight(), g.getY() + g.getHeight())); } } return bounds; } /** * */ protected Polyline createLine(double dx, double dy, Polyline next) { return new Polyline(dx, dy, next); } /** * */ protected static class TreeNode { /** * */ protected Object cell; /** * */ protected double x, y, width, height, offsetX, offsetY; /** * */ protected TreeNode child, next; // parent, sibling /** * */ protected Polygon contour = new Polygon(); /** * */ public TreeNode(Object cell) { this.cell = cell; } } /** * */ protected static class Polygon { /** * */ protected Polyline lowerHead, lowerTail, upperHead, upperTail; } /** * */ protected static class Polyline { /** * */ protected double dx, dy; /** * */ protected Polyline next; /** * */ protected Polyline(double dx, double dy, Polyline next) { this.dx = dx; this.dy = dy; this.next = next; } } }