/** * Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.strata.math.impl.function; import com.opengamma.strata.basics.value.ValueDerivatives; import com.opengamma.strata.collect.ArgChecker; import com.opengamma.strata.collect.array.DoubleArray; import com.opengamma.strata.collect.array.DoubleMatrix; import com.opengamma.strata.math.impl.FunctionUtils; import com.opengamma.strata.math.impl.interpolation.PiecewisePolynomialResult; /** * Give a struct {@link PiecewisePolynomialResult}, Compute value, first derivative * and integral of piecewise polynomial function. */ public class PiecewisePolynomialFunction1D { /** * Creates an instance. */ public PiecewisePolynomialFunction1D() { } //------------------------------------------------------------------------- /** * Evaluates the function. * * @param pp the PiecewisePolynomialResult * @param xKey the key * @return the values of piecewise polynomial functions at xKey * When _dim in PiecewisePolynomialResult is greater than 1, i.e., the struct contains * multiple splines, an element in the return values corresponds to each spline */ public DoubleArray evaluate(PiecewisePolynomialResult pp, double xKey) { ArgChecker.notNull(pp, "pp"); ArgChecker.isFalse(Double.isNaN(xKey), "xKey containing NaN"); ArgChecker.isFalse(Double.isInfinite(xKey), "xKey containing Infinity"); DoubleArray knots = pp.getKnots(); int nKnots = knots.size(); DoubleMatrix coefMatrix = pp.getCoefMatrix(); // check for 1 less interval that knots int lowerBound = FunctionUtils.getLowerBoundIndex(knots, xKey); int indicator = lowerBound == nKnots - 1 ? lowerBound - 1 : lowerBound; return DoubleArray.of(pp.getDimensions(), i -> { DoubleArray coefs = coefMatrix.row(pp.getDimensions() * indicator + i); double res = getValue(coefs, xKey, knots.get(indicator)); ArgChecker.isFalse(Double.isInfinite(res), "Too large input"); ArgChecker.isFalse(Double.isNaN(res), "Too large input"); return res; }); } /** * Evaluates the function. * * @param pp the PiecewisePolynomialResult * @param xKeys the key * @return the values of piecewise polynomial functions at xKeys * When _dim in PiecewisePolynomialResult is greater than 1, i.e., the struct contains * multiple piecewise polynomials, a row vector of return value corresponds to each piecewise polynomial */ public DoubleMatrix evaluate(PiecewisePolynomialResult pp, double[] xKeys) { ArgChecker.notNull(pp, "pp"); ArgChecker.notNull(xKeys, "xKeys"); int keyLength = xKeys.length; for (int i = 0; i < keyLength; ++i) { ArgChecker.isFalse(Double.isNaN(xKeys[i]), "xKeys containing NaN"); ArgChecker.isFalse(Double.isInfinite(xKeys[i]), "xKeys containing Infinity"); } DoubleArray knots = pp.getKnots(); int nKnots = knots.size(); DoubleMatrix coefMatrix = pp.getCoefMatrix(); int dim = pp.getDimensions(); double[][] res = new double[dim][keyLength]; for (int k = 0; k < dim; ++k) { for (int j = 0; j < keyLength; ++j) { int indicator = 0; if (xKeys[j] < knots.get(1)) { indicator = 0; } else { for (int i = 1; i < nKnots - 1; ++i) { if (knots.get(i) <= xKeys[j]) { indicator = i; } } } DoubleArray coefs = coefMatrix.row(dim * indicator + k); res[k][j] = getValue(coefs, xKeys[j], knots.get(indicator)); ArgChecker.isFalse(Double.isInfinite(res[k][j]), "Too large input"); ArgChecker.isFalse(Double.isNaN(res[k][j]), "Too large input"); } } return DoubleMatrix.copyOf(res); } /** * Evaluates the function. * * @param pp the PiecewisePolynomialResult * @param xKeys the key * @return the values of piecewise polynomial functions at xKeys * When _dim in PiecewisePolynomialResult is greater than 1, i.e., the struct contains * multiple piecewise polynomials, one element of return vector of DoubleMatrix * corresponds to each piecewise polynomial */ public DoubleMatrix[] evaluate(PiecewisePolynomialResult pp, double[][] xKeys) { ArgChecker.notNull(pp, "pp"); ArgChecker.notNull(xKeys, "xKeys"); int keyLength = xKeys[0].length; int keyDim = xKeys.length; for (int j = 0; j < keyDim; ++j) { for (int i = 0; i < keyLength; ++i) { ArgChecker.isFalse(Double.isNaN(xKeys[j][i]), "xKeys containing NaN"); ArgChecker.isFalse(Double.isInfinite(xKeys[j][i]), "xKeys containing Infinity"); } } DoubleArray knots = pp.getKnots(); int nKnots = knots.size(); DoubleMatrix coefMatrix = pp.getCoefMatrix(); int dim = pp.getDimensions(); double[][][] res = new double[dim][keyDim][keyLength]; for (int k = 0; k < dim; ++k) { for (int l = 0; l < keyDim; ++l) { for (int j = 0; j < keyLength; ++j) { int indicator = 0; if (xKeys[l][j] < knots.get(1)) { indicator = 0; } else { for (int i = 1; i < nKnots - 1; ++i) { if (knots.get(i) <= xKeys[l][j]) { indicator = i; } } } DoubleArray coefs = coefMatrix.row(dim * indicator + k); res[k][l][j] = getValue(coefs, xKeys[l][j], knots.get(indicator)); ArgChecker.isFalse(Double.isInfinite(res[k][l][j]), "Too large input"); ArgChecker.isFalse(Double.isNaN(res[k][l][j]), "Too large input"); } } } DoubleMatrix[] resMat = new DoubleMatrix[dim]; for (int i = 0; i < dim; ++i) { resMat[i] = DoubleMatrix.copyOf(res[i]); } return resMat; } //------------------------------------------------------------------------- /** * Finds the first derivatives. * * @param pp the PiecewisePolynomialResult * @param xKey the key * @return the first derivatives of piecewise polynomial functions at xKey * When _dim in PiecewisePolynomialResult is greater than 1, i.e., the struct contains * multiple piecewise polynomials, an element in the return values corresponds to each piecewise polynomial */ public DoubleArray differentiate(PiecewisePolynomialResult pp, double xKey) { ArgChecker.notNull(pp, "pp"); ArgChecker.isFalse(pp.getOrder() < 2, "polynomial degree < 1"); DoubleArray knots = pp.getKnots(); int nCoefs = pp.getOrder(); int rowCount = pp.getDimensions() * pp.getNumberOfIntervals(); int colCount = nCoefs - 1; DoubleMatrix coef = DoubleMatrix.of( rowCount, colCount, (i, j) -> pp.getCoefMatrix().get(i, j) * (nCoefs - j - 1)); PiecewisePolynomialResult ppDiff = new PiecewisePolynomialResult(knots, coef, colCount, pp.getDimensions()); return evaluate(ppDiff, xKey); } /** * Finds the first derivatives. * * @param pp the PiecewisePolynomialResult * @param xKeys the key * @return the first derivatives of piecewise polynomial functions at xKeys * When _dim in PiecewisePolynomialResult is greater than 1, i.e., the struct contains * multiple piecewise polynomials, a row vector of return value corresponds to each piecewise polynomial */ public DoubleMatrix differentiate(PiecewisePolynomialResult pp, double[] xKeys) { ArgChecker.notNull(pp, "pp"); ArgChecker.isFalse(pp.getOrder() < 2, "polynomial degree < 1"); DoubleArray knots = pp.getKnots(); int nCoefs = pp.getOrder(); int rowCount = pp.getDimensions() * pp.getNumberOfIntervals(); int colCount = nCoefs - 1; DoubleMatrix coef = DoubleMatrix.of( rowCount, colCount, (i, j) -> pp.getCoefMatrix().get(i, j) * (nCoefs - j - 1)); PiecewisePolynomialResult ppDiff = new PiecewisePolynomialResult(knots, coef, colCount, pp.getDimensions()); return evaluate(ppDiff, xKeys); } //------------------------------------------------------------------------- /** * Finds the second derivatives. * * @param pp the PiecewisePolynomialResult * @param xKey the key * @return the second derivatives of piecewise polynomial functions at xKey * When _dim in PiecewisePolynomialResult is greater than 1, i.e., the struct contains * multiple piecewise polynomials, an element in the return values corresponds to each piecewise polynomial */ public DoubleArray differentiateTwice(PiecewisePolynomialResult pp, double xKey) { ArgChecker.notNull(pp, "pp"); ArgChecker.isFalse(pp.getOrder() < 3, "polynomial degree < 2"); DoubleArray knots = pp.getKnots(); int nCoefs = pp.getOrder(); int rowCount = pp.getDimensions() * pp.getNumberOfIntervals(); int colCount = nCoefs - 2; DoubleMatrix coef = DoubleMatrix.of( rowCount, colCount, (i, j) -> pp.getCoefMatrix().get(i, j) * (nCoefs - j - 1) * (nCoefs - j - 2)); PiecewisePolynomialResult ppDiff = new PiecewisePolynomialResult(knots, coef, nCoefs - 1, pp.getDimensions()); return evaluate(ppDiff, xKey); } /** * Finds the second derivatives. * * @param pp the PiecewisePolynomialResult * @param xKeys the key * @return the second derivatives of piecewise polynomial functions at xKeys * When _dim in PiecewisePolynomialResult is greater than 1, i.e., the struct contains * multiple piecewise polynomials, a row vector of return value corresponds to each piecewise polynomial */ public DoubleMatrix differentiateTwice(PiecewisePolynomialResult pp, double[] xKeys) { ArgChecker.notNull(pp, "pp"); ArgChecker.isFalse(pp.getOrder() < 3, "polynomial degree < 2"); DoubleArray knots = pp.getKnots(); int nCoefs = pp.getOrder(); int rowCount = pp.getDimensions() * pp.getNumberOfIntervals(); int colCount = nCoefs - 2; DoubleMatrix coef = DoubleMatrix.of( rowCount, colCount, (i, j) -> pp.getCoefMatrix().get(i, j) * (nCoefs - j - 1) * (nCoefs - j - 2)); PiecewisePolynomialResult ppDiff = new PiecewisePolynomialResult(knots, coef, nCoefs - 1, pp.getDimensions()); return evaluate(ppDiff, xKeys); } //------------------------------------------------------------------------- /** * Integration. * * @param pp the PiecewisePolynomialResult * @param initialKey the initial key * @param xKey the key * @return the integral of piecewise polynomial between initialKey and xKey */ public double integrate(PiecewisePolynomialResult pp, double initialKey, double xKey) { ArgChecker.notNull(pp, "pp"); ArgChecker.isFalse(Double.isNaN(initialKey), "initialKey containing NaN"); ArgChecker.isFalse(Double.isInfinite(initialKey), "initialKey containing Infinity"); ArgChecker.isTrue(pp.getDimensions() == 1, "Dimension should be 1"); DoubleArray knots = pp.getKnots(); int nCoefs = pp.getOrder(); int nKnots = pp.getNumberOfIntervals() + 1; int rowCount = nKnots - 1; int colCount = nCoefs + 1; double[][] res = new double[rowCount][colCount]; for (int i = 0; i < rowCount; ++i) { for (int j = 0; j < nCoefs; ++j) { res[i][j] = pp.getCoefMatrix().get(i, j) / (nCoefs - j); } } double[] constTerms = new double[rowCount]; int indicator = 0; if (initialKey <= knots.get(1)) { indicator = 0; } else { for (int i = 1; i < rowCount; ++i) { if (knots.get(i) < initialKey) { indicator = i; } } } double sum = getValue(res[indicator], initialKey, knots.get(indicator)); for (int i = indicator; i < nKnots - 2; ++i) { constTerms[i + 1] = constTerms[i] + getValue(res[i], knots.get(i + 1), knots.get(i)) - sum; sum = 0d; } constTerms[indicator] = -getValue(res[indicator], initialKey, knots.get(indicator)); for (int i = indicator - 1; i > -1; --i) { constTerms[i] = constTerms[i + 1] - getValue(res[i], knots.get(i + 1), knots.get(i)); } for (int i = 0; i < rowCount; ++i) { res[i][nCoefs] = constTerms[i]; } PiecewisePolynomialResult ppInt = new PiecewisePolynomialResult(pp.getKnots(), DoubleMatrix.copyOf(res), colCount, 1); return evaluate(ppInt, xKey).get(0); } /** * Integration. * * @param pp the PiecewisePolynomialResult * @param initialKey the initial key * @param xKeys the keys * @return the integral of piecewise polynomial between initialKey and xKeys */ public DoubleArray integrate(PiecewisePolynomialResult pp, double initialKey, double[] xKeys) { ArgChecker.notNull(pp, "pp"); ArgChecker.notNull(xKeys, "xKeys"); ArgChecker.isFalse(Double.isNaN(initialKey), "initialKey containing NaN"); ArgChecker.isFalse(Double.isInfinite(initialKey), "initialKey containing Infinity"); ArgChecker.isTrue(pp.getDimensions() == 1, "Dimension should be 1"); DoubleArray knots = pp.getKnots(); int nCoefs = pp.getOrder(); int nKnots = pp.getNumberOfIntervals() + 1; int rowCount = nKnots - 1; int colCount = nCoefs + 1; double[][] res = new double[rowCount][colCount]; for (int i = 0; i < rowCount; ++i) { for (int j = 0; j < nCoefs; ++j) { res[i][j] = pp.getCoefMatrix().get(i, j) / (nCoefs - j); } } double[] constTerms = new double[rowCount]; int indicator = 0; if (initialKey <= knots.get(1)) { indicator = 0; } else { for (int i = 1; i < rowCount; ++i) { if (knots.get(i) < initialKey) { indicator = i; } } } double sum = getValue(res[indicator], initialKey, knots.get(indicator)); for (int i = indicator; i < nKnots - 2; ++i) { constTerms[i + 1] = constTerms[i] + getValue(res[i], knots.get(i + 1), knots.get(i)) - sum; sum = 0.; } constTerms[indicator] = -getValue(res[indicator], initialKey, knots.get(indicator)); for (int i = indicator - 1; i > -1; --i) { constTerms[i] = constTerms[i + 1] - getValue(res[i], knots.get(i + 1), knots.get(i)); } for (int i = 0; i < rowCount; ++i) { res[i][nCoefs] = constTerms[i]; } PiecewisePolynomialResult ppInt = new PiecewisePolynomialResult(pp.getKnots(), DoubleMatrix.copyOf(res), colCount, 1); return evaluate(ppInt, xKeys).row(0); } //------------------------------------------------------------------------- /** * Evaluates the function and its first derivative. * <p> * The dimension of {@code PiecewisePolynomialResult} must be 1. * * @param pp the PiecewisePolynomialResult * @param xKey the key * @return the value and derivative */ public ValueDerivatives evaluateAndDifferentiate(PiecewisePolynomialResult pp, double xKey) { ArgChecker.notNull(pp, "null pp"); ArgChecker.isFalse(Double.isNaN(xKey), "xKey containing NaN"); ArgChecker.isFalse(Double.isInfinite(xKey), "xKey containing Infinity"); if (pp.getDimensions() > 1) { throw new UnsupportedOperationException(); } DoubleArray knots = pp.getKnots(); int nKnots = knots.size(); int interval = FunctionUtils.getLowerBoundIndex(knots, xKey); if (interval == nKnots - 1) { interval--; // there is 1 less interval that knots } double s = xKey - knots.get(interval); DoubleArray coefs = pp.getCoefMatrix().row(interval); int nCoefs = coefs.size(); double resValue = coefs.get(0); double resDeriv = coefs.get(0) * (nCoefs - 1); for (int i = 1; i < nCoefs - 1; i++) { resValue *= s; resValue += coefs.get(i); resDeriv *= s; resDeriv += coefs.get(i) * (nCoefs - i - 1); ArgChecker.isFalse(Double.isInfinite(resValue), "Too large input"); ArgChecker.isFalse(Double.isNaN(resValue), "Too large input"); } resValue *= s; resValue += coefs.get(nCoefs - 1); return ValueDerivatives.of(resValue, DoubleArray.of(resDeriv)); } //------------------------------------------------------------------------- /** * @param coefs {a_n,a_{n-1},...} of f(x) = a_n x^{n} + a_{n-1} x^{n-1} + .... * @param x the x-value * @param leftknot the knot specifying underlying interpolation function * @return the value of the underlying interpolation function at the value of x */ protected double getValue(DoubleArray coefs, double x, double leftknot) { // needs to delegate as method is protected return getValue(coefs.toArrayUnsafe(), x, leftknot); } /** * @param coefs {a_n,a_{n-1},...} of f(x) = a_n x^{n} + a_{n-1} x^{n-1} + .... * @param x the x-value * @param leftknot the knot specifying underlying interpolation function * @return the value of the underlying interpolation function at the value of x */ protected double getValue(double[] coefs, double x, double leftknot) { int nCoefs = coefs.length; double s = x - leftknot; double res = coefs[0]; for (int i = 1; i < nCoefs; i++) { res *= s; res += coefs[i]; } return res; } }