// Near Infinity - An Infinity Engine Browser and Editor // Copyright (C) 2001 - 2005 Jon Olav Hauglid // See LICENSE.txt for license information package org.infinity.resource.sound; import org.infinity.resource.key.ResourceEntry; import org.infinity.util.DynamicArray; /** * Decodes ACM encoded audio data into uncompressed PCM WAV audio data. */ public class AcmBuffer extends AudioBuffer { public AcmBuffer(ResourceEntry entry) throws Exception { super(entry); } public AcmBuffer(ResourceEntry entry, AudioOverride override) throws Exception { super(entry, override); } public AcmBuffer(byte[] buffer, int offset) throws Exception { super(buffer, offset); } public AcmBuffer(byte[] buffer, int offset, AudioOverride override) throws Exception { super(buffer, offset, override); } //--------------------- Begin Class AudioBuffer --------------------- @Override protected void convert(byte[] buffer, int offset, AudioOverride override) throws Exception { AcmReader acm = new AcmReader(buffer, offset, override); int numSamples = acm.getSampleCount(); int numChannels = acm.getChannels(); int sampleRate = acm.getSampleRate(); int bitsPerSample = acm.getBitsPerSample(); byte[] header = createWAVHeader(numSamples / numChannels, numChannels, sampleRate, bitsPerSample); data = new byte[header.length + numSamples * bitsPerSample / 8]; System.arraycopy(header, 0, data, 0, header.length); acm.readSamples(data, header.length, numSamples); } //--------------------- End Class AudioBuffer --------------------- //-------------------------- INNER CLASSES -------------------------- // ACM decoder class private static class AcmReader { private static final int ID_ACM = 0x01032897; private final DynamicArray bufferB; // ACM input buffer and offset private final AudioOverride override; private int signature = 0, levels = 0, subBlocks = 0, blockSize = 0, samplesReady = 0; private int numChannels = 0, sampleRate = 0; private int numSamples = 0; // total count of sound samples private int samplesLeft = 0; // count of unprocessed samples private DynamicArray blockI, valuesI; private ValueUnpacker unpacker; // ACM-stream unpacker private SubbandDecoder decoder; // Interplay's subband decoder private AcmReader(byte[] buffer, int offset) throws Exception { this(buffer, offset, null); } private AcmReader(byte[] buffer, int offset, AudioOverride override) throws Exception { if (buffer == null) throw new NullPointerException(); if (offset < 0 || offset + 14 > buffer.length) throw new Exception("Input buffer too small"); bufferB = DynamicArray.wrap(buffer, offset, DynamicArray.ElementType.BYTE); if (override == null) override = AudioOverride.override(0, 0, 0); this.override = override; init(); } private void init() throws Exception { signature = bufferB.getInt(0); numSamples = bufferB.getInt(4); numChannels = bufferB.getUnsignedShort(8); if (override.numChannels > 0) numChannels = override.numChannels; sampleRate = bufferB.getUnsignedShort(10); if (override.sampleRate > 0) sampleRate = override.sampleRate; short val = bufferB.getShort(12); levels = val & 0x0f; subBlocks = (val >>> 4) & 0x0fff; bufferB.addToBaseOffset(14); if (signature != ID_ACM) throw new Exception("Invalid ACM header signature"); if (numSamples < 0) throw new Exception("Invalid number of sample: " + numSamples); if (numChannels < 1 || numChannels > 2) throw new Exception("Unsupported number of channels: " + numChannels); if (sampleRate < 4096 || sampleRate > 192000) throw new Exception("Unsupported sample rate: " + sampleRate); samplesLeft = numSamples; blockSize = (1 << levels) * subBlocks; blockI = DynamicArray.allocate(blockSize, DynamicArray.ElementType.INTEGER); unpacker = new ValueUnpacker(levels, subBlocks, bufferB); decoder = new SubbandDecoder(levels); } private void makeNewSamples() { unpacker.getOneBlock(blockI); decoder.decode(blockI, subBlocks); valuesI = blockI.clone(); samplesReady = (blockSize > samplesLeft) ? samplesLeft : blockSize; samplesLeft -= samplesReady; } private int readSamples(byte[] outBuffer, int offset, int sampleCount) { DynamicArray bufS = DynamicArray.wrap(outBuffer, offset, DynamicArray.ElementType.SHORT); int res = 0; while (res < sampleCount) { if (samplesReady == 0) { if (samplesLeft == 0) break; makeNewSamples(); } bufS.putShort(0, (short)(valuesI.getInt(0) >> levels)); valuesI.addToBaseOffset(1); bufS.addToBaseOffset(1); res++; samplesReady--; } // fill remaining buffer space with silence for (int i = res; i < sampleCount; i++) { bufS.putShort(0, (short)0).addToBaseOffset(1); } return res; } private int getChannels() { return numChannels; } private int getSampleRate() { return sampleRate; } private int getSampleCount() { return numSamples; } private int getBitsPerSample() { if (override.bitsPerSample > 0) return override.bitsPerSample; else return 16; // always 16 bit (unless overridden) } } private static class ValueUnpacker { private static final byte[] TABLE1 = new byte[] { 0, 1, 2, 4, 5, 6, 8, 9,10, 16,17,18, 20,21,22, 24,25,26, 32,33,34, 36,37,38, 40,41,42, 0, 1, 2, 4, 5 // added for type-safety reasons }; private static final short[] TABLE2 = new short[] { 0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 88, 89, 90, 91, 92, 96, 97, 98, 99,100, 128,129,130,131,132, 136,137,138,139,140, 144,145,146,147,148, 152,153,154,155,156, 160,161,162,163,164, 192,193,194,195,196, 200,201,202,203,204, 208,209,210,211,212, 216,217,218,219,220, 224,225,226,227,228, 256,257,258,259,260, 264,265,266,267,268, 272,273,274,275,276, 280,281,282,283,284, 288,289,290,291,292, 0, 1, 2 // added for type-safety reasons }; private static final short[] TABLE3 = new short[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 // added for type-safety reasons }; private int levels, subBlocks; private DynamicArray bufferB; private int nextBits, availBits; private int sbSize; private DynamicArray ampBufS, bufMiddleS; private DynamicArray blockI; private ValueUnpacker(int levels, int sbCount, DynamicArray bufB) { if (bufB == null) throw new NullPointerException(); this.levels = levels; this.subBlocks = sbCount; this.bufferB = bufB.clone(); this.nextBits = this.availBits = 0; this.sbSize = 1 << this.levels; this.ampBufS = bufMiddleS = this.blockI = null; init(); } private void init() { ampBufS = DynamicArray.allocate(0x10000, DynamicArray.ElementType.SHORT); bufMiddleS = ampBufS.clone().addToBaseOffset(0x8000); } private void getOneBlock(DynamicArray blockI) { this.blockI = blockI.clone(); int pwr = getBits(4) & 0x0f; int val = getBits(16) & 0xffff; int count = 1 << pwr; int v = 0; for (int i = 0; i < count; i++) { bufMiddleS.putShort(i, (short)v); v += val; } v = -val; for (int i = 0; i < count; i++) { bufMiddleS.putShort(-i-1, (short)v); v -= val; } for (int pass = 0; pass < sbSize; pass++) { int idx = getBits(5) & 0x1f; if (fillerProc(idx, pass, idx) == 0) return; } } // *** These functions are used to fill the buffer with the amplitude values *** private int fillerProc(int fn, int pass, int idx) { switch (fn & 31) { case 0: return zeroFill(pass, idx); case 3: case 4: case 5: case 6: case 7: case 8: case 9: case 10: case 11: case 12: case 13: case 14: case 15: case 16: return linearFill(pass, idx); case 17: return k1Bits3(pass, idx); case 18: return k1Bits2(pass, idx); case 19: return t1Bits5(pass, idx); case 20: return k2Bits4(pass, idx); case 21: return k2Bits3(pass, idx); case 22: return t2Bits7(pass, idx); case 23: return k3Bits5(pass, idx); case 24: return k3Bits4(pass, idx); case 26: return k4Bits5(pass, idx); case 27: return k4Bits4(pass, idx); case 29: return t3Bits7(pass, idx); // case 1: case 2: case 25: case 28: case 30: case 31: default: return return0(pass, idx); } } private int return0(int pass, int idx) { return 0; } // used when the whole column pass is zero-filled private int zeroFill(int pass, int idx) { DynamicArray sbI = blockI.clone().addToBaseOffset(pass); int step = sbSize; int i = subBlocks; do { sbI.putInt(0, 0).addToBaseOffset(step); } while ((--i) != 0); return 1; } private int linearFill(int pass, int idx) { int mask = (1 << idx) - 1; DynamicArray lbS = bufMiddleS.clone().addToBaseOffset(-1 << (idx-1)); for (int i = 0; i < subBlocks; i++) { blockI.putInt(i*sbSize+pass, lbS.getShort((getBits(idx) & mask))); } return 1; } // column with number pass is filled with zeros, and also +/-1, zeros are repeated frequently private int k1Bits3(int pass, int idx) { // Efficiency (bits per value): 3-p0-2.5*p00, p00 - cnt of paired zeros, p0 - cnt of single zeros. // it makes sense to use, when the frequency of paired zeros (p00) is greater than 2/3 for (int i = 0; i < subBlocks; i++) { prepareBits(3); if ((nextBits & 1) == 0) { availBits--; nextBits >>= 1; blockI.putInt(i*sbSize+pass, 0); if ((++i) == subBlocks) break; blockI.putInt(i*sbSize+pass, 0); } else if ((nextBits & 2) == 0) { availBits -= 2; nextBits >>= 2; blockI.putInt(i*sbSize+pass, 0); } else { blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(((nextBits & 4) != 0) ? 1 : -1)); availBits -= 3; nextBits >>= 3; } } return 1; } // column is filled with zero and +/-1 private int k1Bits2(int pass, int idx) { // Efficiency: 2-P0. P0 - cnt of any zero (P0 = p0 + p00) // use it when P0 > 1/3 for (int i = 0; i < subBlocks; i++) { prepareBits(2); if ((nextBits & 1) == 0) { availBits--; nextBits >>= 1; blockI.putInt(i*sbSize+pass, 0); } else { blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(((nextBits & 2) != 0) ? 1 : -1)); availBits -= 2; nextBits >>= 2; } } return 1; } // all the -1, 0, +1 triplets private int t1Bits5(int pass, int idx) { // Efficiency: always 5/3 bits per value // use it when P0 <= 1/3 for (int i = 0; i < subBlocks; i++) { byte val = (byte)(getBits(5) & 0x1f); val = TABLE1[val]; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort((val & 3)-1)); if ((++i) == subBlocks) break; val >>= 2; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort((val & 3)-1)); if ((++i) == subBlocks) break; val >>= 2; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(val-1)); } return 1; } // -2, -1, 0, 1, 2, and repeating zeros private int k2Bits4(int pass, int idx) { // Efficiency: 4-2*p0-3.5*p00, p00 - cnt of paired zeros, p0 - cnt of single zeros. // makes sense to use when p00>2/3 for (int i = 0; i < subBlocks; i++) { prepareBits(4); if ((nextBits & 1) == 0) { availBits--; nextBits >>= 1; blockI.putInt(i*sbSize+pass, 0); if ((++i) == subBlocks) break; blockI.putInt(i*sbSize+pass, 0); } else if ((nextBits & 2) == 0) { availBits -= 2; nextBits >>= 2; blockI.putInt(i*sbSize+pass, 0); } else { blockI.putInt(i*sbSize+pass, ((nextBits & 8) != 0) ? bufMiddleS.getShort(((nextBits & 4) != 0) ? 2 : 1) : bufMiddleS.getShort(((nextBits & 4) != 0) ? -1 : -2)); availBits -= 4; nextBits >>= 4; } } return 1; } // -2, -1, 0, 1, 2 private int k2Bits3(int pass, int idx) { // Efficiency: 3-2*P0, P0 - cnt of any zero (P0 = p0 + p00) // use when P0>1/3 for (int i = 0; i < subBlocks; i++) { prepareBits(3); if ((nextBits & 1) == 0) { availBits--; nextBits >>= 1; blockI.putInt(i*sbSize+pass, 0); } else { blockI.putInt(i*sbSize+pass, ((nextBits & 4) != 0) ? bufMiddleS.getShort(((nextBits & 2) != 0) ? 2 : 1) : bufMiddleS.getShort(((nextBits & 2) != 0) ? -1 : -2)); availBits -= 3; nextBits >>= 3; } } return 1; } // all the +/-2, +/-1, 0 triplets private int t2Bits7(int pass, int idx) { // Efficiency: always 7/3 bits per value // use it when p0 <= 1/3 for (int i = 0; i < subBlocks; i++) { short val = (short)(getBits(7) & 0x7f); val = TABLE2[val]; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort((val & 7)-2)); if ((++i) == subBlocks) break; val >>= 3; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort((val & 7)-2)); if ((++i) == subBlocks) break; val >>= 3; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(val-2)); } return 1; } // fills with values: -3, -2, -1, 0, 1, 2, 3, and double zeros private int k3Bits5(int pass, int idx) { // Efficiency: 5-3*p0-4.5*p00-p1, p00 - cnt of paired zeros, p0 - cnt of single zeros, p1 - cnt of +/- 1. // can be used when frequency of paired zeros (p00) is greater than 2/3 for (int i = 0; i < subBlocks; i++) { prepareBits(5); if ((nextBits & 1) == 0) { availBits--; nextBits >>= 1; blockI.putInt(i*sbSize+pass, 0); if ((++i) == subBlocks) break; blockI.putInt(i*sbSize+pass, 0); } else if ((nextBits & 2) == 0) { availBits -= 2; nextBits >>= 2; blockI.putInt(i*sbSize+pass, 0); } else if ((nextBits & 4) == 0) { blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(((nextBits & 8) != 0) ? 1 : -1)); availBits -= 4; nextBits >>= 4; } else { availBits -= 5; int val = (nextBits & 0x18) >> 3; nextBits >>= 5; if (val >= 2) val += 3; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(val-3)); } } return 1; } // fills with values: -3, -2, -1, 0, 1, 2, 3. private int k3Bits4(int pass, int idx) { // Efficiency: 4-3*P0-p1, P0 - cnt of all zeros (P0 = p0 + p00), p1 - cnt of +/- 1. for (int i = 0; i < subBlocks; i++) { prepareBits(4); if ((nextBits & 1) == 0) { availBits--; nextBits >>= 1; blockI.putInt(i*sbSize+pass, 0); } else if ((nextBits & 2) == 0) { availBits -= 3; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(((nextBits & 4) != 0) ? 1 : -1)); nextBits >>= 3; } else { int val = (nextBits & 0x0c) >> 2; availBits -= 4; nextBits >>= 4; if (val >= 2) val += 3; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(val-3)); } } return 1; } // fills with values: +/-4, +/-3, +/-2, +/-1, 0, and double zeros private int k4Bits5(int pass, int idx) { // Efficiency: 5-3*p0-4.5*p00, p00 - cnt of paired zeros, p0 - cnt of single zeros. // makes sense to use when p00>2/3 for (int i = 0; i < subBlocks; i++) { prepareBits(5); if ((nextBits & 1) == 0) { availBits--; nextBits >>= 1; blockI.putInt(i*sbSize+pass, 0); if ((++i) == subBlocks) break; blockI.putInt(i*sbSize+pass, 0); } else if ((nextBits & 2) == 0) { availBits -= 2; nextBits >>= 2; blockI.putInt(i*sbSize+pass, 0); } else { int val = (nextBits & 0x1c) >> 2; if (val >= 4) val++; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(val-4)); availBits -= 5; nextBits >>= 5; } } return 1; } // fills with values: +/-4, +/-3, +/-2, +/-1, 0, and double zeros private int k4Bits4(int pass, int idx) { // Efficiency: 4-3*P0, P0 - cnt of all zeros (both single and paired). for (int i = 0; i < subBlocks; i++) { prepareBits(4); if ((nextBits & 1) == 0) { availBits--; nextBits >>= 1; blockI.putInt(i*sbSize+pass, 0); } else { int val = (nextBits & 0x0e) >> 1; availBits -= 4; nextBits >>= 4; if (val >= 4) val++; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(val-4)); } } return 1; } // all the pairs of values from -5 to +5 private int t3Bits7(int pass, int idx) { // Efficiency: 7/2 bits per value for (int i = 0; i < subBlocks; i++) { short val = (short)(getBits(7) & 0x7f); val = TABLE3[val]; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort((val & 0x0f) - 5)); if ((++i) == subBlocks) break; val >>= 4; blockI.putInt(i*sbSize+pass, bufMiddleS.getShort(val-5)); } return 1; } // request bits private void prepareBits(int bits) { while (bits > availBits) { int oneByte; if (bufferB.getBaseOffset() < bufferB.arraySize()) { oneByte = bufferB.getByte(0) & 0xff; bufferB.addToBaseOffset(1); } else oneByte = 0; nextBits |= oneByte << availBits; availBits += 8; } } // request and return next bits private int getBits(int bits) { prepareBits(bits); int res = nextBits; availBits -= bits; nextBits >>= bits; return res; } } private static class SubbandDecoder { private final int levels, blockSize; private DynamicArray memBufI; private SubbandDecoder(int levels) { this.levels = levels; blockSize = 1 << this.levels; init(); } private void decode(DynamicArray bufferI, int blocks) { if (levels == 0) return; DynamicArray bufI = bufferI.clone(); DynamicArray memI = memBufI.clone(); int sbSize = blockSize >> 1; // current subband size blocks <<= 1; sub_4d3fcc(memI.asShortArray(), bufI, sbSize, blocks); memI.addToBaseOffset(sbSize); for (int i = 0; i < blocks; i++) { bufI.putInt(i*sbSize, bufI.getInt(i*sbSize) + 1); } sbSize >>= 1; blocks <<= 1; while (sbSize != 0) { sub_4d420c(memI, bufI, sbSize, blocks); memI.addToBaseOffset(sbSize << 1); sbSize >>= 1; blocks <<= 1; } } private void init() { int memSize = (levels == 0) ? 0 : (3*(blockSize >> 1) - 2); if (memSize > 0) { memBufI = DynamicArray.allocate(memSize, DynamicArray.ElementType.INTEGER); } } private void sub_4d3fcc(DynamicArray memoryS, DynamicArray bufferI, int sbSize, int blocks) { DynamicArray memS = memoryS.clone(); DynamicArray bufI = bufferI.clone(); int row0 = 0, row1 = 0, row2 = 0, row3 = 0, db0 = 0, db1 = 0; int sbSize2 = sbSize * 2; int sbSize3 = sbSize * 3; if (blocks == 2) { for (int i = 0; i < sbSize; i++) { row0 = bufI.getInt(0); row1 = bufI.getInt(sbSize); bufI.putInt(0, bufI.getInt(0) + memS.getShort(0) + (memS.getShort(1) << 1)); bufI.putInt(sbSize, (row0 << 1) - memS.getShort(1) - bufI.getInt(sbSize)); memS.putShort(0, (short)row0); memS.putShort(1, (short)row1); memS.addToBaseOffset(2); bufI.addToBaseOffset(1); } } else if (blocks == 4) { for (int i = 0; i < sbSize; i++) { row0 = bufI.getInt(0); row1 = bufI.getInt(sbSize); row2 = bufI.getInt(sbSize2); row3 = bufI.getInt(sbSize3); bufI.putInt(0, memS.getShort(0) + (memS.getShort(1) << 1) + row0); bufI.putInt(sbSize, -memS.getShort(1) + (row0 << 1) - row1); bufI.putInt(sbSize2, row0 + (row1 << 1) + row2); bufI.putInt(sbSize3, -row1 + (row2 << 1) - row3); memS.putShort(0, (short)row2); memS.putShort(1, (short)row3); memS.addToBaseOffset(2); bufI.addToBaseOffset(1); } } else { DynamicArray buf2I = bufI.clone(); for (int i = 0; i < sbSize; i++) { buf2I.setBaseOffset(bufI.getBaseOffset()); if ((blocks & 2) != 0) { row0 = buf2I.getInt(0); row1 = buf2I.getInt(sbSize); buf2I.putInt(0, memS.getShort(0) + (memS.getShort(1) << 1) + row0); buf2I.putInt(sbSize, -memS.getShort(1) + (row0 << 1) - row1); buf2I.addToBaseOffset(sbSize2); db0 = row0; db1 = row1; } else { db0 = memS.getShort(0); db1 = memS.getShort(1); } for (int j = 0; j < (blocks >> 2); j++) { row0 = buf2I.getInt(0); buf2I.putInt(0, db0 + (db1 << 1) + row0); buf2I.addToBaseOffset(sbSize); row1 = buf2I.getInt(0); buf2I.putInt(0, -db1 + (row0 << 1) - row1); buf2I.addToBaseOffset(sbSize); row2 = buf2I.getInt(0); buf2I.putInt(0, row0 + (row1 << 1) + row2); buf2I.addToBaseOffset(sbSize); row3 = buf2I.getInt(0); buf2I.putInt(0, -row1 + (row2 << 1) - row3); buf2I.addToBaseOffset(sbSize); db0 = row2; db1 = row3; } memS.putShort(0, (short)row2); memS.putShort(1, (short)row3); memS.addToBaseOffset(2); bufI.addToBaseOffset(1); } } } private void sub_4d420c(DynamicArray memoryI, DynamicArray bufferI, int sbSize, int blocks) { DynamicArray memI = memoryI.clone(); DynamicArray bufI = bufferI.clone(); int row0 = 0, row1 = 0, row2 = 0, row3 = 0, db0 = 0, db1 = 0; int sbSize2 = sbSize * 2; int sbSize3 = sbSize * 3; if (blocks == 4) { for (int i = 0; i < sbSize; i++) { row0 = bufI.getInt(0); row1 = bufI.getInt(sbSize); row2 = bufI.getInt(sbSize2); row3 = bufI.getInt(sbSize3); bufI.putInt(0, memI.getInt(0) + (memI.getInt(1) << 1) + row0); bufI.putInt(sbSize, -memI.getInt(1) + (row0 << 1) - row1); bufI.putInt(sbSize2, row0 + (row1 << 1) + row2); bufI.putInt(sbSize3, -row1 + (row2 << 1) - row3); memI.putInt(0, row2); memI.putInt(1, row3); memI.addToBaseOffset(2); bufI.addToBaseOffset(1); } } else { DynamicArray buf2I = bufI.clone(); for (int i = 0; i < sbSize; i++) { buf2I.setBaseOffset(bufI.getBaseOffset()); db0 = memI.getInt(0); db1 = memI.getInt(1); for (int j = 0; j < (blocks >> 2); j++) { row0 = buf2I.getInt(0); buf2I.putInt(0, db0 + (db1 << 1) + row0); buf2I.addToBaseOffset(sbSize); row1 = buf2I.getInt(0); buf2I.putInt(0, -db1 + (row0 << 1) - row1); buf2I.addToBaseOffset(sbSize); row2 = buf2I.getInt(0); buf2I.putInt(0, row0 + (row1 << 1) + row2); buf2I.addToBaseOffset(sbSize); row3 = buf2I.getInt(0); buf2I.putInt(0, -row1 + (row2 << 1) - row3); buf2I.addToBaseOffset(sbSize); db0 = row2; db1 = row3; } memI.putInt(0, row2); memI.putInt(1, row3); memI.addToBaseOffset(2); bufI.addToBaseOffset(1); } } } } }