/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.tuscany.sca.common.xml.stax.reader; import java.util.ArrayList; import java.util.EmptyStackException; import java.util.Iterator; import java.util.List; import javax.xml.namespace.NamespaceContext; public class DelegatingNamespaceContext implements NamespaceContext { private static int count; private class WrappingIterator implements Iterator { private Iterator containedIterator; public WrappingIterator(Iterator containedIterator) { this.containedIterator = containedIterator; } public Iterator getContainedIterator() { return containedIterator; } public boolean hasNext() { return containedIterator.hasNext(); } public Object next() { return containedIterator.next(); } /** * As per the contract on the API of Namespace context the returned iterator should be immutable */ public void remove() { throw new UnsupportedOperationException(); } public void setContainedIterator(Iterator containedIterator) { this.containedIterator = containedIterator; } } private NamespaceContext parentNsContext; private FastStack<String> prefixStack = new FastStack<String>(); // Keep two ArrayLists for the prefixes and namespaces. They should be in // sync // since the index of the entry will be used to relate them // use the minimum initial capacity to let things handle memory better private FastStack<String> uriStack = new FastStack<String>(); /** * Generates a unique namespace prefix that is not in the scope of the NamespaceContext * * @return string */ public String generateUniquePrefix() { String prefix = "p" + count++; // null should be returned if the prefix is not bound! while (getNamespaceURI(prefix) != null) { prefix = "p" + count++; } return prefix; } public String getNamespaceURI(String prefix) { // do the corrections as per the Javadoc int index = prefixStack.search(prefix); if (index != -1) { return uriStack.get(index); } if (parentNsContext != null) { return parentNsContext.getPrefix(prefix); } return null; } public NamespaceContext getParentNsContext() { return parentNsContext; } public String getPrefix(String uri) { // do the corrections as per the Javadoc int index = uriStack.search(uri); if (index != -1) { return prefixStack.get(index); } if (parentNsContext != null) { return parentNsContext.getPrefix(uri); } return null; } public Iterator getPrefixes(String uri) { // create an ArrayList that contains the relevant prefixes String[] uris = uriStack.toArray(new String[uriStack.size()]); List<String> tempList = new ArrayList<String>(); for (int i = uris.length - 1; i >= 0; i--) { if (uris[i].equals(uri)) { tempList.add(prefixStack.get(i)); // we assume that array conversion preserves the order } } // by now all the relevant prefixes are collected // make a new iterator and provide a wrapper iterator to // obey the contract on the API return new WrappingIterator(tempList.iterator()); } /** * Pop a namespace */ public void popNamespace() { prefixStack.pop(); uriStack.pop(); } /** * Register a namespace in this context * * @param prefix * @param uri */ public void pushNamespace(String prefix, String uri) { prefixStack.push(prefix); uriStack.push(uri); } public void setParentNsContext(NamespaceContext parentNsContext) { this.parentNsContext = parentNsContext; } /** * An implementation of the {@link java.util.Stack} API that is based on an <code>ArrayList</code> instead of a * <code>Vector</code>, so it is not synchronized to protect against multi-threaded access. The implementation is * therefore operates faster in environments where you do not need to worry about multiple thread contention. * <p> * The removal order of an <code>ArrayStack</code> is based on insertion order: The most recently added element is * removed first. The iteration order is <i>not</i> the same as the removal order. The iterator returns elements * from the bottom up, whereas the {@link #remove()} method removes them from the top down. * <p> * Unlike <code>Stack</code>, <code>ArrayStack</code> accepts null entries. */ public static class FastStack<T> extends ArrayList<T> { /** Ensure Serialization compatibility */ private static final long serialVersionUID = 2130079159931574599L; /** * Constructs a new empty <code>ArrayStack</code>. The initial size is controlled by <code>ArrayList</code> * and is currently 10. */ public FastStack() { super(); } /** * Constructs a new empty <code>ArrayStack</code> with an initial size. * * @param initialSize the initial size to use * @throws IllegalArgumentException if the specified initial size is negative */ public FastStack(int initialSize) { super(initialSize); } /** * Return <code>true</code> if this stack is currently empty. * <p> * This method exists for compatibility with <code>java.util.Stack</code>. New users of this class should use * <code>isEmpty</code> instead. * * @return true if the stack is currently empty */ public boolean empty() { return isEmpty(); } /** * Returns the top item off of this stack without removing it. * * @return the top item on the stack * @throws EmptyStackException if the stack is empty */ public T peek() throws EmptyStackException { int n = size(); if (n <= 0) { throw new EmptyStackException(); } else { return get(n - 1); } } /** * Returns the n'th item down (zero-relative) from the top of this stack without removing it. * * @param n the number of items down to go * @return the n'th item on the stack, zero relative * @throws EmptyStackException if there are not enough items on the stack to satisfy this request */ public T peek(int n) throws EmptyStackException { int m = (size() - n) - 1; if (m < 0) { throw new EmptyStackException(); } else { return get(m); } } /** * Pops the top item off of this stack and return it. * * @return the top item on the stack * @throws EmptyStackException if the stack is empty */ public T pop() throws EmptyStackException { int n = size(); if (n <= 0) { throw new EmptyStackException(); } else { return remove(n - 1); } } /** * Pushes a new item onto the top of this stack. The pushed item is also returned. This is equivalent to calling * <code>add</code>. * * @param item the item to be added * @return the item just pushed */ public Object push(T item) { add(item); return item; } /** * Returns the top-most index for the object in the stack * * @param object the object to be searched for * @return top-most index, or -1 if not found */ public int search(T object) { int i = size() - 1; // Current index while (i >= 0) { T current = get(i); if ((object == null && current == null) || (object != null && object.equals(current))) { return i; } i--; } return -1; } /** * Returns the element on the top of the stack. * * @return the element on the top of the stack * @throws EmptyStackException if the stack is empty */ public T get() { int size = size(); if (size == 0) { throw new EmptyStackException(); } return get(size - 1); } /** * Removes the element on the top of the stack. * * @return the removed element * @throws EmptyStackException if the stack is empty */ public T remove() { int size = size(); if (size == 0) { throw new EmptyStackException(); } return remove(size - 1); } } }