/* * OpenPixi - Open Particle-In-Cell (PIC) Simulator * Copyright (C) 2012 OpenPixi.org * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ package org.openpixi.pixi.diagnostics.methods; import java.util.ArrayList; import org.openpixi.pixi.diagnostics.DataOutput; import org.openpixi.pixi.physics.grid.Grid; import org.openpixi.pixi.physics.particles.Particle; import edu.emory.mathcs.jtransforms.fft.*; /** * Calculates the electrostatic potential with the Fast Fourier Transform. * THIS IS A GLOBAL METHOD! IT NEEDS THE WHOLE GRID TO FUNCTION PROPERLY. * Here we assume periodic boundary conditions! */ public class Potential implements Diagnostics { /** Storage */ double[][] phi; /** Period of calculation */ private int calculationPeriod; /** The next iteration when this diagnostic should be performed */ private int nextIteration = 0; /** Determines whether there is new data. I.e. whether calculate was called but the * new data not yet extracted with getData. */ private boolean newData = false; public Potential(int calculationPeriod) { this.calculationPeriod = calculationPeriod; } public void calculate(Grid g, ArrayList<Particle> particles) { //size of the array to be transformed int columns = g.getNumCellsX(); int rows = g.getNumCellsY(); double cellArea = g.getCellWidth() * g.getCellHeight(); //JTransform saves the imaginary part as a second row entry //therefore there must be twice as many rows double[][] trho = new double[columns][2*rows]; double[][] tphi = new double[columns][2*rows]; DoubleFFT_2D fft = new DoubleFFT_2D(columns, rows); //prepare input for fft for(int i = 0; i < columns; i++) { for(int j = 0; j < rows; j++) { trho[i][2*j] = g.getRho(i,j); trho[i][2*j+1] = 0; } } //perform Fourier transformation fft.complexForward(trho); //Solve Poisson equation in Fourier space //We omit the term with i,j=0 where d would become 0. This term only contributes a constant term //to the potential and can therefore be chosen arbitrarily. for(int i = 1; i < columns; i++) { for(int j = 0; j < rows; j++) { double d = (4 - 2 * Math.cos((2 * Math.PI * i) / columns) - 2 * Math.cos((2 * Math.PI * j) / rows)); tphi[i][2*j] = (cellArea * trho[i][2*j]) / d; tphi[i][2*j+1] = (cellArea * trho[i][2*j+1]) / d; } } //i=0 but j!=0 for(int j = 1; j < rows; j++) { double d = (2 - 2 * Math.cos((2 * Math.PI * j) / rows)); tphi[0][2*j] = (cellArea * trho[0][2*j]) / d; tphi[0][2*j+1] = (cellArea * trho[0][2*j+1]) / d; } //perform inverse Fourier transform fft.complexInverse(tphi, true); phi = new double[columns][rows]; for(int i = 0; i < columns; i++) { for(int j = 0; j < rows; j++) { phi[i][j] = tphi[i][2*j]; } } // Bookkeeping nextIteration += calculationPeriod; newData = true; } public int getNextIteration() { return nextIteration; } public boolean checkIfNewData() { return newData; } public void getData(DataOutput out) { out.potential(phi); newData = false; } }