/** * MVEL 2.0 * Copyright (C) 2007 The Codehaus * Mike Brock, Dhanji Prasanna, John Graham, Mark Proctor * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.mvel2.util; import org.mvel2.CompileException; import org.mvel2.DataTypes; import org.mvel2.MVEL; import org.mvel2.Operator; import org.mvel2.OptimizationFailure; import org.mvel2.ParserContext; import org.mvel2.ast.ASTNode; import org.mvel2.compiler.AbstractParser; import org.mvel2.compiler.BlankLiteral; import org.mvel2.compiler.CompiledExpression; import org.mvel2.compiler.ExecutableAccessor; import org.mvel2.compiler.ExecutableAccessorSafe; import org.mvel2.compiler.ExecutableLiteral; import org.mvel2.compiler.ExpressionCompiler; import org.mvel2.integration.VariableResolverFactory; import org.mvel2.integration.impl.ClassImportResolverFactory; import org.mvel2.math.MathProcessor; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileWriter; import java.io.IOException; import java.io.InputStream; import java.io.Serializable; import java.lang.ref.WeakReference; import java.lang.reflect.Constructor; import java.lang.reflect.Method; import java.lang.reflect.Modifier; import java.math.BigDecimal; import java.math.BigInteger; import java.math.MathContext; import java.nio.ByteBuffer; import java.nio.channels.ReadableByteChannel; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.WeakHashMap; import static java.lang.Class.forName; import static java.lang.Double.parseDouble; import static java.lang.String.valueOf; import static java.lang.System.arraycopy; import static java.lang.Thread.currentThread; import static java.nio.ByteBuffer.allocateDirect; import static org.mvel2.DataConversion.canConvert; import static org.mvel2.DataTypes.*; import static org.mvel2.MVEL.getDebuggingOutputFileName; import static org.mvel2.compiler.AbstractParser.LITERALS; import static org.mvel2.integration.ResolverTools.appendFactory; @SuppressWarnings({"ManualArrayCopy"}) public class ParseTools { public static final Object[] EMPTY_OBJ_ARR = new Object[0]; public static final Class[] EMPTY_CLS_ARR = new Class[0]; public static List<char[]> parseMethodOrConstructor(char[] parm) { int start = -1; for (int i = 0; i < parm.length; i++) { if (parm[i] == '(') { start = ++i; break; } } if (start != -1) { return parseParameterList(parm, --start + 1, balancedCapture(parm, start, '(') - start - 1); } return Collections.emptyList(); } public static String[] parseParameterDefList(char[] parm, int offset, int length) { List<String> list = new LinkedList<String>(); if (length == -1) length = parm.length; int start = offset; int i = offset; int end = i + length; String s; for (; i < end; i++) { switch (parm[i]) { case '(': case '[': case '{': i = balancedCapture(parm, i, parm[i]); continue; case '\'': i = captureStringLiteral('\'', parm, i, parm.length); continue; case '"': i = captureStringLiteral('"', parm, i, parm.length); continue; case ',': if (i > start) { while (isWhitespace(parm[start])) start++; checkNameSafety(s = new String(parm, start, i - start)); list.add(s); } while (isWhitespace(parm[i])) i++; start = i + 1; continue; default: if (!isWhitespace(parm[i]) && !isIdentifierPart(parm[i])) { throw new CompileException("expected parameter", parm, start); } } } if (start < (length + offset) && i > start) { if ((s = createStringTrimmed(parm, start, i - start)).length() > 0) { checkNameSafety(s); list.add(s); } } else if (list.size() == 0) { if ((s = createStringTrimmed(parm, start, length)).length() > 0) { checkNameSafety(s); list.add(s); } } return list.toArray(new String[list.size()]); } public static List<char[]> parseParameterList(char[] parm, int offset, int length) { List<char[]> list = new ArrayList<char[]>(); if (length == -1) length = parm.length; int start = offset; int i = offset; int end = i + length; for (; i < end; i++) { switch (parm[i]) { case '(': case '[': case '{': i = balancedCapture(parm, i, parm[i]); continue; case '\'': i = captureStringLiteral('\'', parm, i, parm.length); continue; case '"': i = captureStringLiteral('"', parm, i, parm.length); continue; case ',': if (i > start) { while (isWhitespace(parm[start])) start++; list.add(subsetTrimmed(parm, start, i - start)); } while (isWhitespace(parm[i])) i++; start = i + 1; } } if (start < (length + offset) && i > start) { char[] s = subsetTrimmed(parm, start, i - start); if (s.length > 0) list.add(s); } else if (list.size() == 0) { char[] s = subsetTrimmed(parm, start, length); if (s.length > 0) list.add(s); } return list; } public static Method getBestCandidate(Object[] arguments, String method, Class decl, Method[] methods, boolean requireExact) { Class[] targetParms = new Class[arguments.length]; for (int i = 0; i != arguments.length; i++) { targetParms[i] = arguments[i] != null ? arguments[i].getClass() : null; } return getBestCandidate(targetParms, method, decl, methods, requireExact); } public static Method getBestCandidate(Class[] arguments, String method, Class decl, Method[] methods, boolean requireExact) { return getBestCandidate(arguments, method, decl, methods, requireExact, false); } public static Method getBestCandidate(Class[] arguments, String method, Class decl, Method[] methods, boolean requireExact, boolean classTarget) { if (methods.length == 0) { return null; } Class<?>[] parmTypes; Method bestCandidate = null; int bestScore = -1; boolean retry = false; do { for (Method meth : methods) { if (classTarget && !Modifier.isStatic(meth.getModifiers())) continue; if (method.equals(meth.getName())) { parmTypes = meth.getParameterTypes(); if (parmTypes.length == 0 && arguments.length == 0) { if (bestCandidate == null || isMoreSpecialized(meth, bestCandidate) ) { bestCandidate = meth; } continue; } boolean isVarArgs = meth.isVarArgs(); if (parmTypes.length != arguments.length && !isVarArgs) { continue; } int score = getMethodScore(arguments, requireExact, parmTypes, isVarArgs); if (score != 0) { if (score > bestScore) { bestCandidate = meth; bestScore = score; } else if (score == bestScore) { if (isMoreSpecialized(meth, bestCandidate) && !isVarArgs) { bestCandidate = meth; } } } } } if (bestCandidate != null) { break; } if (!retry && decl.isInterface()) { Method[] objMethods = Object.class.getMethods(); Method[] nMethods = new Method[methods.length + objMethods.length]; for (int i = 0; i < methods.length; i++) { nMethods[i] = methods[i]; } for (int i = 0; i < objMethods.length; i++) { nMethods[i + methods.length] = objMethods[i]; } methods = nMethods; retry = true; } else { break; } } while (true); return bestCandidate; } private static boolean isMoreSpecialized( Method newCandidate, Method oldCandidate ) { return oldCandidate.getReturnType().isAssignableFrom( newCandidate.getReturnType()) && oldCandidate.getDeclaringClass().isAssignableFrom( newCandidate.getDeclaringClass()); } private static int getMethodScore(Class[] arguments, boolean requireExact, Class<?>[] parmTypes, boolean varArgs) { int score = 0; for (int i = 0; i != arguments.length; i++) { Class<?> actualParamType; if (varArgs && i >= parmTypes.length - 1) actualParamType = parmTypes[parmTypes.length - 1].getComponentType(); else actualParamType = parmTypes[i]; if (arguments[i] == null) { if (!actualParamType.isPrimitive()) { score += 6; } else { score = 0; break; } } else if (actualParamType == arguments[i]) { score += 7; } else if (actualParamType.isPrimitive() && boxPrimitive(actualParamType) == arguments[i]) { score += 6; } else if (arguments[i].isPrimitive() && unboxPrimitive(arguments[i]) == actualParamType) { score += 6; } else if (actualParamType.isAssignableFrom(arguments[i])) { score += 5; } else if (isNumericallyCoercible(arguments[i], actualParamType)) { score += 4; } else if (boxPrimitive(actualParamType).isAssignableFrom(boxPrimitive(arguments[i])) && Object.class != arguments[i]) { score += 3 + scoreInterface(actualParamType, arguments[i]); } else if (!requireExact && canConvert(actualParamType, arguments[i])) { if (actualParamType.isArray() && arguments[i].isArray()) score += 1; else if (actualParamType == char.class && arguments[i] == String.class) score += 1; score += 1; } else if (actualParamType == Object.class || arguments[i] == NullType.class) { score += 1; } else { score = 0; break; } } if (score == 0 && varArgs && parmTypes.length - 1 == arguments.length) { score += 3; } return score; } public static int scoreInterface(Class<?> parm, Class<?> arg) { if (parm.isInterface()) { Class[] iface = arg.getInterfaces(); if (iface != null) { for (Class c : iface) { if (c == parm) return 1; else if (parm.isAssignableFrom(c)) return scoreInterface(parm, arg.getSuperclass()); } } } return 0; } public static Method getExactMatch(String name, Class[] args, Class returnType, Class cls) { outer: for (Method meth : cls.getMethods()) { if (name.equals(meth.getName()) && returnType == meth.getReturnType()) { Class[] parameterTypes = meth.getParameterTypes(); if (parameterTypes.length != args.length) continue; for (int i = 0; i < parameterTypes.length; i++) { if (parameterTypes[i] != args[i]) continue outer; } return meth; } } return null; } public static Method getWidenedTarget(Method method) { return getWidenedTarget(method.getDeclaringClass(), method); } public static Method getWidenedTarget(Class cls, Method method) { if (Modifier.isStatic(method.getModifiers())) { return method; } Method m = method, best = method; Class[] args = method.getParameterTypes(); String name = method.getName(); Class rt = m.getReturnType(); Class currentCls = cls; while (currentCls != null) { for (Class iface : currentCls.getInterfaces()) { if ((m = getExactMatch(name, args, rt, iface)) != null) { best = m; } } currentCls = currentCls.getSuperclass(); } if (best != method) return best; for (currentCls = cls; currentCls != null; currentCls = currentCls.getSuperclass()) { if ((m = getExactMatch(name, args, rt, currentCls)) != null) { best = m; } } return best; } private static final Map<Constructor, WeakReference<Class[]>> CONSTRUCTOR_PARMS_CACHE = Collections.synchronizedMap( new WeakHashMap<Constructor, WeakReference<Class[]>>(10) ); private static Class[] getConstructors(Constructor cns) { WeakReference<Class[]> ref = CONSTRUCTOR_PARMS_CACHE.get(cns); Class[] parms; if (ref != null && (parms = ref.get()) != null) { return parms; } else { CONSTRUCTOR_PARMS_CACHE.put(cns, new WeakReference<Class[]>(parms = cns.getParameterTypes())); return parms; } } public static Constructor getBestConstructorCandidate(Object[] args, Class cls, boolean requireExact) { Class[] arguments = new Class[args.length]; for (int i = 0; i != args.length; i++) { if (args[i] != null) { arguments[i] = args[i].getClass(); } } return getBestConstructorCandidate(arguments, cls, requireExact); } public static Constructor getBestConstructorCandidate(Class[] arguments, Class cls, boolean requireExact) { Class[] parmTypes; Constructor bestCandidate = null; int bestScore = 0; for (Constructor construct : getConstructors(cls)) { boolean isVarArgs = construct.isVarArgs(); if ((parmTypes = getConstructors(construct)).length != arguments.length && !construct.isVarArgs()) { continue; } else if (arguments.length == 0 && parmTypes.length == 0) { return construct; } int score = getMethodScore(arguments, requireExact, parmTypes, isVarArgs); if (score != 0 && score > bestScore) { bestCandidate = construct; bestScore = score; } } return bestCandidate; } private static final Map<ClassLoader, Map<String, WeakReference<Class>>> CLASS_RESOLVER_CACHE = Collections.synchronizedMap( new WeakHashMap<ClassLoader, Map<String, WeakReference<Class>>>(1, 1.0f) ); private static final Map<Class, WeakReference<Constructor[]>> CLASS_CONSTRUCTOR_CACHE = Collections.synchronizedMap( new WeakHashMap<Class, WeakReference<Constructor[]>>(10) ); public static Class createClass(String className, ParserContext pCtx) throws ClassNotFoundException { ClassLoader classLoader = pCtx != null ? pCtx.getClassLoader() : currentThread().getContextClassLoader(); Map<String, WeakReference<Class>> cache = CLASS_RESOLVER_CACHE.get(classLoader); if (cache == null) { CLASS_RESOLVER_CACHE.put(classLoader, cache = Collections.synchronizedMap( new WeakHashMap<String, WeakReference<Class>>(10) ) ); } WeakReference<Class> ref; Class cls; if ((ref = cache.get(className)) != null && (cls = ref.get()) != null) { return cls; } else { try { cls = Class.forName(className, true, classLoader); } catch (ClassNotFoundException e) { /** * Now try the system classloader. */ if (classLoader != Thread.currentThread().getContextClassLoader()) { cls = forName(className, true, Thread.currentThread().getContextClassLoader()); } else { throw e; } } cache.put(className, new WeakReference<Class>(cls)); return cls; } } public static Constructor[] getConstructors(Class cls) { WeakReference<Constructor[]> ref = CLASS_CONSTRUCTOR_CACHE.get(cls); Constructor[] cns; if (ref != null && (cns = ref.get()) != null) { return cns; } else { CLASS_CONSTRUCTOR_CACHE.put(cls, new WeakReference<Constructor[]>(cns = cls.getConstructors())); return cns; } } public static String[] captureContructorAndResidual(char[] cs, int start, int offset) { int depth = 0; int end = start + offset; boolean inQuotes = false; for (int i = start; i < end; i++) { switch (cs[i]) { case '"': inQuotes = !inQuotes; break; case '(': depth++; break; case ')': if (!inQuotes) { if (1 == depth--) { return new String[]{createStringTrimmed(cs, start, ++i - start), createStringTrimmed(cs, i, end - i)}; } } } } return new String[]{new String(cs, start, offset)}; } public static Class<?> boxPrimitive(Class cls) { if (cls == int.class || cls == Integer.class) { return Integer.class; } else if (cls == int[].class || cls == Integer[].class) { return Integer[].class; } else if (cls == char.class || cls == Character.class) { return Character.class; } else if (cls == char[].class || cls == Character[].class) { return Character[].class; } else if (cls == long.class || cls == Long.class) { return Long.class; } else if (cls == long[].class || cls == Long[].class) { return Long[].class; } else if (cls == short.class || cls == Short.class) { return Short.class; } else if (cls == short[].class || cls == Short[].class) { return Short[].class; } else if (cls == double.class || cls == Double.class) { return Double.class; } else if (cls == double[].class || cls == Double[].class) { return Double[].class; } else if (cls == float.class || cls == Float.class) { return Float.class; } else if (cls == float[].class || cls == Float[].class) { return Float[].class; } else if (cls == boolean.class || cls == Boolean.class) { return Boolean.class; } else if (cls == boolean[].class || cls == Boolean[].class) { return Boolean[].class; } else if (cls == byte.class || cls == Byte.class) { return Byte.class; } else if (cls == byte[].class || cls == Byte[].class) { return Byte[].class; } return cls; } public static Class unboxPrimitive(Class cls) { if (cls == Integer.class || cls == int.class) { return int.class; } else if (cls == Integer[].class || cls == int[].class) { return int[].class; } else if (cls == Long.class || cls == long.class) { return long.class; } else if (cls == Long[].class || cls == long[].class) { return long[].class; } else if (cls == Character.class || cls == char.class) { return char.class; } else if (cls == Character[].class || cls == char[].class) { return char[].class; } else if (cls == Short.class || cls == short.class) { return short.class; } else if (cls == Short[].class || cls == short[].class) { return short[].class; } else if (cls == Double.class || cls == double.class) { return double.class; } else if (cls == Double[].class || cls == double[].class) { return double[].class; } else if (cls == Float.class || cls == float.class) { return float.class; } else if (cls == Float[].class || cls == float[].class) { return float[].class; } else if (cls == Boolean.class || cls == boolean.class) { return boolean.class; } else if (cls == Boolean[].class || cls == boolean[].class) { return boolean[].class; } else if (cls == Byte.class || cls == byte.class) { return byte.class; } else if (cls == Byte[].class || cls == byte[].class) { return byte[].class; } return cls; } public static boolean containsCheck(Object compareTo, Object compareTest) { if (compareTo == null) return false; else if (compareTo instanceof String) return ((String) compareTo).contains(valueOf(compareTest)); else if (compareTo instanceof Collection) return ((Collection) compareTo).contains(compareTest); else if (compareTo instanceof Map) return ((Map) compareTo).containsKey(compareTest); else if (compareTo.getClass().isArray()) { if (compareTo.getClass().getComponentType().isPrimitive()) return containsCheckOnPrimitveArray(compareTo, compareTest); for (Object o : ((Object[]) compareTo)) { if (compareTest == null && o == null) return true; if ((Boolean) MathProcessor.doOperations(o, Operator.EQUAL, compareTest)) return true; } } return false; } private static boolean containsCheckOnPrimitveArray(Object primitiveArray, Object compareTest) { Class<?> primitiveType = primitiveArray.getClass().getComponentType(); if (primitiveType == boolean.class) return compareTest instanceof Boolean && containsCheckOnBooleanArray((boolean[]) primitiveArray, (Boolean) compareTest); if (primitiveType == int.class) return compareTest instanceof Integer && containsCheckOnIntArray((int[]) primitiveArray, (Integer) compareTest); if (primitiveType == long.class) return compareTest instanceof Long && containsCheckOnLongArray((long[]) primitiveArray, (Long) compareTest); if (primitiveType == double.class) return compareTest instanceof Double && containsCheckOnDoubleArray((double[]) primitiveArray, (Double) compareTest); if (primitiveType == float.class) return compareTest instanceof Float && containsCheckOnFloatArray((float[]) primitiveArray, (Float) compareTest); if (primitiveType == char.class) return compareTest instanceof Character && containsCheckOnCharArray((char[]) primitiveArray, (Character) compareTest); if (primitiveType == short.class) return compareTest instanceof Short && containsCheckOnShortArray((short[]) primitiveArray, (Short) compareTest); if (primitiveType == byte.class) return compareTest instanceof Byte && containsCheckOnByteArray((byte[]) primitiveArray, (Byte) compareTest); return false; } private static boolean containsCheckOnBooleanArray(boolean[] array, Boolean compareTest) { boolean test = compareTest; for (boolean b : array) if (b == test) return true; return false; } private static boolean containsCheckOnIntArray(int[] array, Integer compareTest) { int test = compareTest; for (int i : array) if (i == test) return true; return false; } private static boolean containsCheckOnLongArray(long[] array, Long compareTest) { long test = compareTest; for (long l : array) if (l == test) return true; return false; } private static boolean containsCheckOnDoubleArray(double[] array, Double compareTest) { double test = compareTest; for (double d : array) if (d == test) return true; return false; } private static boolean containsCheckOnFloatArray(float[] array, Float compareTest) { float test = compareTest; for (float f : array) if (f == test) return true; return false; } private static boolean containsCheckOnCharArray(char[] array, Character compareTest) { char test = compareTest; for (char c : array) if (c == test) return true; return false; } private static boolean containsCheckOnShortArray(short[] array, Short compareTest) { short test = compareTest; for (short s : array) if (s == test) return true; return false; } private static boolean containsCheckOnByteArray(byte[] array, Byte compareTest) { byte test = compareTest; for (byte b : array) if (b == test) return true; return false; } /** * Replace escape sequences and return trim required. * * @param escapeStr - * @param pos - * @return - */ public static int handleEscapeSequence(char[] escapeStr, int pos) { escapeStr[pos - 1] = 0; switch (escapeStr[pos]) { case '\\': escapeStr[pos] = '\\'; return 1; case 'b': escapeStr[pos] = '\b'; return 1; case 'f': escapeStr[pos] = '\f'; return 1; case 't': escapeStr[pos] = '\t'; return 1; case 'r': escapeStr[pos] = '\r'; return 1; case 'n': escapeStr[pos] = '\n'; return 1; case '\'': escapeStr[pos] = '\''; return 1; case '"': escapeStr[pos] = '\"'; return 1; case 'u': //unicode int s = pos; if (s + 4 > escapeStr.length) throw new CompileException("illegal unicode escape sequence", escapeStr, pos); else { while (++pos - s != 5) { if ((escapeStr[pos] > ('0' - 1) && escapeStr[pos] < ('9' + 1)) || (escapeStr[pos] > ('A' - 1) && escapeStr[pos] < ('F' + 1))) { } else { throw new CompileException("illegal unicode escape sequence", escapeStr, pos); } } escapeStr[s - 1] = (char) Integer.decode("0x" + new String(escapeStr, s + 1, 4)).intValue(); escapeStr[s] = 0; escapeStr[s + 1] = 0; escapeStr[s + 2] = 0; escapeStr[s + 3] = 0; escapeStr[s + 4] = 0; return 5; } default: //octal s = pos; while (escapeStr[pos] >= '0' && escapeStr[pos] < '8') { if (pos != s && escapeStr[s] > '3') { escapeStr[s - 1] = (char) Integer.decode("0" + new String(escapeStr, s, pos - s + 1)).intValue(); escapeStr[s] = 0; escapeStr[s + 1] = 0; return 2; } else if ((pos - s) == 2) { escapeStr[s - 1] = (char) Integer.decode("0" + new String(escapeStr, s, pos - s + 1)).intValue(); escapeStr[s] = 0; escapeStr[s + 1] = 0; escapeStr[s + 2] = 0; return 3; } if (pos + 1 == escapeStr.length || (escapeStr[pos] < '0' || escapeStr[pos] > '7')) { escapeStr[s - 1] = (char) Integer.decode("0" + new String(escapeStr, s, pos - s + 1)).intValue(); escapeStr[s] = 0; return 1; } pos++; } throw new CompileException("illegal escape sequence: " + escapeStr[pos], escapeStr, pos); } } public static char[] createShortFormOperativeAssignment(String name, char[] statement, int start, int offset, int operation) { if (operation == -1) { return statement; } char[] stmt; char op = 0; switch (operation) { case Operator.ADD: op = '+'; break; case Operator.STR_APPEND: op = '#'; break; case Operator.SUB: op = '-'; break; case Operator.MULT: op = '*'; break; case Operator.MOD: op = '%'; break; case Operator.DIV: op = '/'; break; case Operator.BW_AND: op = '&'; break; case Operator.BW_OR: op = '|'; break; case Operator.BW_SHIFT_LEFT: op = '\u00AB'; break; case Operator.BW_SHIFT_RIGHT: op = '\u00BB'; break; case Operator.BW_USHIFT_RIGHT: op = '\u00AC'; break; } arraycopy(name.toCharArray(), 0, (stmt = new char[name.length() + offset + 1]), 0, name.length()); stmt[name.length()] = op; arraycopy(statement, start, stmt, name.length() + 1, offset); return stmt; } public static ClassImportResolverFactory findClassImportResolverFactory(VariableResolverFactory factory, ParserContext pCtx) { if (factory == null) { throw new OptimizationFailure("unable to import classes. no variable resolver factory available."); } for (VariableResolverFactory v = factory; v != null; v = v.getNextFactory()) { if (v instanceof ClassImportResolverFactory) { return (ClassImportResolverFactory) v; } } return appendFactory(factory, new ClassImportResolverFactory(null, null, false)); } public static Class findClass(VariableResolverFactory factory, String name, ParserContext pCtx) throws ClassNotFoundException { try { if (LITERALS.containsKey(name)) { return (Class) LITERALS.get(name); } else if (factory != null && factory.isResolveable(name)) { return (Class) factory.getVariableResolver(name).getValue(); } else if (pCtx != null && pCtx.hasImport(name)) { return pCtx.getImport(name); } else { return createClass(name, pCtx); } } catch (ClassNotFoundException e) { throw e; } catch (Exception e) { throw new RuntimeException("class not found: " + name, e); } } public static char[] subsetTrimmed(char[] array, int start, int length) { if (length <= 0) { return new char[0]; } int end = start + length; while (end > 0 && isWhitespace(array[end - 1])) { end--; } while (isWhitespace(array[start]) && start < end) { start++; } length = end - start; if (length == 0) { return new char[0]; } return subset(array, start, length); } public static char[] subset(char[] array, int start, int length) { char[] newArray = new char[length]; for (int i = 0; i < newArray.length; i++) { newArray[i] = array[i + start]; } return newArray; } public static char[] subset(char[] array, int start) { char[] newArray = new char[array.length - start]; for (int i = 0; i < newArray.length; i++) { newArray[i] = array[i + start]; } return newArray; } private static final HashMap<Class, Integer> typeResolveMap = new HashMap<Class, Integer>(); static { Map<Class, Integer> t = typeResolveMap; t.put(BigDecimal.class, DataTypes.BIG_DECIMAL); t.put(BigInteger.class, DataTypes.BIG_INTEGER); t.put(String.class, DataTypes.STRING); t.put(int.class, INTEGER); t.put(Integer.class, DataTypes.W_INTEGER); t.put(short.class, DataTypes.SHORT); t.put(Short.class, DataTypes.W_SHORT); t.put(float.class, DataTypes.FLOAT); t.put(Float.class, DataTypes.W_FLOAT); t.put(double.class, DOUBLE); t.put(Double.class, DataTypes.W_DOUBLE); t.put(long.class, LONG); t.put(Long.class, DataTypes.W_LONG); t.put(boolean.class, DataTypes.BOOLEAN); t.put(Boolean.class, DataTypes.W_BOOLEAN); t.put(byte.class, DataTypes.BYTE); t.put(Byte.class, DataTypes.W_BYTE); t.put(char.class, DataTypes.CHAR); t.put(Character.class, DataTypes.W_CHAR); t.put(BlankLiteral.class, DataTypes.EMPTY); } public static int resolveType(Object o) { if (o == null) return DataTypes.OBJECT; else return __resolveType(o.getClass()); } private static final Map<Class, Integer> typeCodes = new HashMap<Class, Integer>(30, 0.5f); static { typeCodes.put(Integer.class, DataTypes.W_INTEGER); typeCodes.put(Double.class, DataTypes.W_DOUBLE); typeCodes.put(Boolean.class, DataTypes.W_BOOLEAN); typeCodes.put(String.class, DataTypes.STRING); typeCodes.put(Long.class, DataTypes.W_LONG); typeCodes.put(Short.class, DataTypes.W_SHORT); typeCodes.put(Float.class, DataTypes.W_FLOAT); typeCodes.put(Byte.class, DataTypes.W_BYTE); typeCodes.put(Character.class, DataTypes.W_CHAR); typeCodes.put(BigDecimal.class, DataTypes.BIG_DECIMAL); typeCodes.put(BigInteger.class, DataTypes.BIG_INTEGER); typeCodes.put(int.class, DataTypes.INTEGER); typeCodes.put(double.class, DataTypes.DOUBLE); typeCodes.put(boolean.class, DataTypes.BOOLEAN); typeCodes.put(long.class, DataTypes.LONG); typeCodes.put(short.class, DataTypes.SHORT); typeCodes.put(float.class, DataTypes.FLOAT); typeCodes.put(byte.class, DataTypes.BYTE); typeCodes.put(char.class, DataTypes.CHAR); typeCodes.put(BlankLiteral.class, DataTypes.EMPTY); } public static int __resolveType(Class cls) { Integer code = typeCodes.get(cls); if (code == null) { if (cls != null && Collection.class.isAssignableFrom(cls)) { return DataTypes.COLLECTION; } else { return DataTypes.OBJECT; } } return code; } public static boolean isNumericallyCoercible(Class target, Class parm) { Class boxedTarget = target.isPrimitive() ? boxPrimitive(target) : target; if (boxedTarget != null && Number.class.isAssignableFrom(target)) { if ((boxedTarget = parm.isPrimitive() ? boxPrimitive(parm) : parm) != null) { return Number.class.isAssignableFrom(boxedTarget); } } return false; } public static Object narrowType(final BigDecimal result, int returnTarget) { if (returnTarget == DataTypes.W_DOUBLE || result.scale() > 0) { return result.doubleValue(); } else if (returnTarget == DataTypes.W_LONG || result.longValue() > Integer.MAX_VALUE) { return result.longValue(); } else { return result.intValue(); } } public static Method determineActualTargetMethod(Method method) { return determineActualTargetMethod(method.getDeclaringClass(), method); } private static Method determineActualTargetMethod(Class clazz, Method method) { String name = method.getName(); /** * Follow our way up the class heirarchy until we find the physical target method. */ for (Class cls : clazz.getInterfaces()) { for (Method meth : cls.getMethods()) { if (meth.getParameterTypes().length == 0 && name.equals(meth.getName())) { return meth; } } } return clazz.getSuperclass() != null ? determineActualTargetMethod(clazz.getSuperclass(), method) : null; } public static int captureToNextTokenJunction(char[] expr, int cursor, int end, ParserContext pCtx) { while (cursor != expr.length) { switch (expr[cursor]) { case '{': case '(': return cursor; case '[': cursor = balancedCaptureWithLineAccounting(expr, cursor, end, '[', pCtx) + 1; continue; default: if (isWhitespace(expr[cursor])) { return cursor; } cursor++; } } return cursor; } public static int nextNonBlank(char[] expr, int cursor) { if ((cursor + 1) >= expr.length) { throw new CompileException("unexpected end of statement", expr, cursor); } int i = cursor; while (i != expr.length && isWhitespace(expr[i])) i++; return i; } public static int skipWhitespace(char[] expr, int cursor) { Skip: while (cursor != expr.length) { switch (expr[cursor]) { case '\n': case '\r': cursor++; continue; case '/': if (cursor + 1 != expr.length) { switch (expr[cursor + 1]) { case '/': expr[cursor++] = ' '; while (cursor != expr.length && expr[cursor] != '\n') expr[cursor++] = ' '; if (cursor != expr.length) expr[cursor++] = ' '; continue; case '*': int len = expr.length - 1; expr[cursor++] = ' '; while (cursor != len && !(expr[cursor] == '*' && expr[cursor + 1] == '/')) { expr[cursor++] = ' '; } if (cursor != len) expr[cursor++] = expr[cursor++] = ' '; continue; default: break Skip; } } default: if (!isWhitespace(expr[cursor])) break Skip; } cursor++; } return cursor; } public static boolean isStatementNotManuallyTerminated(char[] expr, int cursor) { if (cursor >= expr.length) return false; int c = cursor; while (c != expr.length && isWhitespace(expr[c])) c++; return !(c != expr.length && expr[c] == ';'); } public static int captureToEOS(char[] expr, int cursor, int end, ParserContext pCtx) { while (cursor != expr.length) { switch (expr[cursor]) { case '(': case '[': case '{': if ((cursor = balancedCaptureWithLineAccounting(expr, cursor, end, expr[cursor], pCtx)) >= expr.length) return cursor; break; case '"': case '\'': cursor = captureStringLiteral(expr[cursor], expr, cursor, expr.length); break; case ',': case ';': case '}': return cursor; } cursor++; } return cursor; } /** * From the specified cursor position, trim out any whitespace between the current position and the end of the * last non-whitespace character. * * @param expr - * @param start - * @param pos - current position * @return new position. */ public static int trimLeft(char[] expr, int start, int pos) { if (pos > expr.length) pos = expr.length; while (pos != 0 && pos >= start && isWhitespace(expr[pos - 1])) pos--; return pos; } /** * From the specified cursor position, trim out any whitespace between the current position and beginning of the * first non-whitespace character. * * @param expr - * @param pos - * @return - */ public static int trimRight(char[] expr, int pos) { while (pos != expr.length && isWhitespace(expr[pos])) pos++; return pos; } public static char[] subArray(char[] expr, final int start, final int end) { if (start >= end) return new char[0]; char[] newA = new char[end - start]; for (int i = 0; i != newA.length; i++) { newA[i] = expr[i + start]; } return newA; } /** * This is an important aspect of the core parser tools. This method is used throughout the core parser * and sub-lexical parsers to capture a balanced capture between opening and terminating tokens such as: * <em>( [ { ' " </em> * <br> * <br> * For example: ((foo + bar + (bar - foo)) * 20;<br> * <br> * <p/> * If a balanced capture is performed from position 2, we get "(foo + bar + (bar - foo))" back.<br> * If a balanced capture is performed from position 15, we get "(bar - foo)" back.<br> * Etc. * * @param chars - * @param start - * @param type - * @return - */ public static int balancedCapture(char[] chars, int start, char type) { return balancedCapture(chars, start, chars.length, type); } public static int balancedCapture(char[] chars, int start, int end, char type) { int depth = 1; char term = type; switch (type) { case '[': term = ']'; break; case '{': term = '}'; break; case '(': term = ')'; break; } if (type == term) { for (start++; start < end; start++) { if (chars[start] == type) { return start; } } } else { for (start++; start < end; start++) { if (start < end && chars[start] == '/') { if (start + 1 == end) return start; if (chars[start + 1] == '/') { start++; while (start < end && chars[start] != '\n') start++; } else if (chars[start + 1] == '*') { start += 2; SkipComment: while (start < end) { switch (chars[start]) { case '*': if (start + 1 < end && chars[start + 1] == '/') { break SkipComment; } case '\r': case '\n': break; } start++; } } } if (start == end) return start; if (chars[start] == '\'' || chars[start] == '"') { start = captureStringLiteral(chars[start], chars, start, end); } else if (chars[start] == type) { depth++; } else if (chars[start] == term && --depth == 0) { return start; } } } switch (type) { case '[': throw new CompileException("unbalanced braces [ ... ]", chars, start); case '{': throw new CompileException("unbalanced braces { ... }", chars, start); case '(': throw new CompileException("unbalanced braces ( ... )", chars, start); default: throw new CompileException("unterminated string literal", chars, start); } } public static int balancedCaptureWithLineAccounting(char[] chars, int start, int end, char type, ParserContext pCtx) { int depth = 1; int st = start; char term = type; switch (type) { case '[': term = ']'; break; case '{': term = '}'; break; case '(': term = ')'; break; } if (type == term) { for (start++; start != end; start++) { if (chars[start] == type) { return start; } } } else { int lines = 0; for (start++; start < end; start++) { if (isWhitespace(chars[start])) { switch (chars[start]) { case '\r': continue; case '\n': if (pCtx != null) pCtx.setLineOffset((short) start); lines++; } } else if (start < end && chars[start] == '/') { if (start + 1 == end) return start; if (chars[start + 1] == '/') { start++; while (start < end && chars[start] != '\n') start++; } else if (chars[start + 1] == '*') { start += 2; Skiploop: while (start != end) { switch (chars[start]) { case '*': if (start + 1 < end && chars[start + 1] == '/') { break Skiploop; } case '\r': case '\n': if (pCtx != null) pCtx.setLineOffset((short) start); lines++; break; } start++; } } } if (start == end) return start; if (chars[start] == '\'' || chars[start] == '"') { start = captureStringLiteral(chars[start], chars, start, end); } else if (chars[start] == type) { depth++; } else if (chars[start] == term && --depth == 0) { if (pCtx != null) pCtx.incrementLineCount(lines); return start; } } } switch (type) { case '[': throw new CompileException("unbalanced braces [ ... ]", chars, st); case '{': throw new CompileException("unbalanced braces { ... }", chars, st); case '(': throw new CompileException("unbalanced braces ( ... )", chars, st); default: throw new CompileException("unterminated string literal", chars, st); } } public static String handleStringEscapes(char[] input) { int escapes = 0; for (int i = 0; i < input.length; i++) { if (input[i] == '\\') { escapes += handleEscapeSequence(input, ++i); } } if (escapes == 0) return new String(input); char[] processedEscapeString = new char[input.length - escapes]; int cursor = 0; for (char aName : input) { if (aName != 0) { processedEscapeString[cursor++] = aName; } } return new String(processedEscapeString); } public static int captureStringLiteral(final char type, final char[] expr, int cursor, int end) { while (++cursor < end && expr[cursor] != type) { if (expr[cursor] == '\\') cursor++; } if (cursor >= end || expr[cursor] != type) { throw new CompileException("unterminated string literal", expr, cursor); } return cursor; } public static void parseWithExpressions(String nestParm, char[] block, int start, int offset, Object ctx, VariableResolverFactory factory) { /** * * MAINTENANCE NOTE: A COMPILING VERSION OF THIS CODE IS DUPLICATED IN: WithNode * */ int _st = start; int _end = -1; int end = start + offset; int oper = -1; String parm = ""; for (int i = start; i < end; i++) { switch (block[i]) { case '{': case '[': case '(': case '\'': case '"': i = balancedCapture(block, i, end, block[i]); continue; case '/': if (i < end && block[i + 1] == '/') { while (i < end && block[i] != '\n') block[i++] = ' '; if (parm == null) _st = i; } else if (i < end && block[i + 1] == '*') { int len = end - 1; while (i < len && !(block[i] == '*' && block[i + 1] == '/')) { block[i++] = ' '; } block[i++] = ' '; block[i++] = ' '; if (parm == null) _st = i; } else if (i < end && block[i + 1] == '=') { oper = Operator.DIV; } continue; case '%': case '*': case '-': case '+': if (i + 1 < end && block[i + 1] == '=') { oper = opLookup(block[i]); } continue; case '=': parm = new String(block, _st, i - _st - (oper != -1 ? 1 : 0)).trim(); _st = i + 1; continue; case ',': if (_end == -1) _end = i; if (parm == null) { try { if (nestParm == null) { MVEL.eval(new String(block, _st, _end - _st), ctx, factory); } else { MVEL.eval(new StringBuilder(nestParm).append('.') .append(block, _st, _end - _st).toString(), ctx, factory); } } catch (CompileException e) { e.setCursor(_st + (e.getCursor() - (e.getExpr().length - offset))); e.setExpr(block); throw e; } oper = -1; _st = ++i; } else { try { if (oper != -1) { if (nestParm == null) { throw new CompileException("operative assignment not possible here", block, start); } String rewrittenExpr = new String( createShortFormOperativeAssignment(nestParm + "." + parm, block, _st, _end - _st, oper)); MVEL.setProperty(ctx, parm, MVEL.eval(rewrittenExpr, ctx, factory)); } else { MVEL.setProperty(ctx, parm, MVEL.eval(block, _st, _end - _st, ctx, factory)); } } catch (CompileException e) { e.setCursor(_st + (e.getCursor() - (e.getExpr().length - offset))); e.setExpr(block); throw e; } parm = null; oper = -1; _st = ++i; } _end = -1; break; } } if (_st != (_end = end)) { try { if (parm == null || "".equals(parm)) { if (nestParm == null) { MVEL.eval(new String(block, _st, _end - _st), ctx, factory); } else { MVEL.eval(new StringAppender(nestParm).append('.') .append(block, _st, _end - _st).toString(), ctx, factory); } } else { if (oper != -1) { if (nestParm == null) { throw new CompileException("operative assignment not possible here", block, start); } MVEL.setProperty(ctx, parm, MVEL.eval( new String(createShortFormOperativeAssignment(nestParm + "." + parm, block, _st, _end - _st, oper)), ctx, factory ) ); } else { MVEL.setProperty(ctx, parm, MVEL.eval(block, _st, end - _st, ctx, factory)); } } } catch (CompileException e) { e.setCursor(_st + (e.getCursor() - (e.getExpr().length - offset))); e.setExpr(block); throw e; } } } public static Object handleNumericConversion(final char[] val, int start, int offset) { if (offset != 1 && val[start] == '0' && val[start + 1] != '.') { if (!isDigit(val[start + offset - 1])) { switch (val[start + offset - 1]) { case 'L': case 'l': return Long.decode(new String(val, start, offset - 1)); case 'I': return new BigInteger(new String(val, start, offset - 1)); case 'B': return new BigDecimal(new String(val, start, offset - 1)); } } return Integer.decode(new String(val, start, offset)); } else if (!isDigit(val[start + offset - 1])) { switch (val[start + offset - 1]) { case 'l': case 'L': return java.lang.Long.parseLong(new String(val, start, offset - 1)); case '.': case 'd': case 'D': return parseDouble(new String(val, start, offset - 1)); case 'f': case 'F': return java.lang.Float.parseFloat(new String(val, start, offset - 1)); case 'I': return new BigInteger(new String(val, start, offset - 1)); case 'B': return new BigDecimal(new String(val, start, offset - 1)); } throw new CompileException("unrecognized numeric literal", val, start); } else { switch (numericTest(val, start, offset)) { case DataTypes.FLOAT: return java.lang.Float.parseFloat(new String(val, start, offset)); case INTEGER: return java.lang.Integer.parseInt(new String(val, start, offset)); case LONG: return java.lang.Long.parseLong(new String(val, start, offset)); case DOUBLE: return parseDouble(new String(val, start, offset)); case DataTypes.BIG_DECIMAL: return new BigDecimal(val, MathContext.DECIMAL128); default: return new String(val, start, offset); } } } public static boolean isNumeric(Object val) { if (val == null) return false; Class clz; if (val instanceof Class) { clz = (Class) val; } else { clz = val.getClass(); } return clz == int.class || clz == long.class || clz == short.class || clz == double.class || clz == float.class || Number.class.isAssignableFrom(clz); } public static int numericTest(final char[] val, int start, int offset) { boolean fp = false; char c; int i = start; if (offset > 1) { if (val[start] == '-') i++; else if (val[start] == '~') { i++; if (val[start + 1] == '-') i++; } } int end = start + offset; for (; i < end; i++) { if (!isDigit(c = val[i])) { switch (c) { case '.': fp = true; break; case 'e': case 'E': fp = true; if (i++ < end && val[i] == '-') i++; break; default: return -1; } } } if (offset != 0) { if (fp) { return DOUBLE; } else if (offset > 9) { return LONG; } else { return INTEGER; } } return -1; } public static boolean isNumber(Object val) { if (val == null) return false; if (val instanceof String) return isNumber((String) val); if (val instanceof char[]) return isNumber(new String((char[]) val)); return val instanceof Integer || val instanceof BigDecimal || val instanceof BigInteger || val instanceof Float || val instanceof Double || val instanceof Long || val instanceof Short || val instanceof Character; } public static boolean isNumber(final String val) { int len = val.length(); char c; boolean f = true; int i = 0; if (len > 1) { if (val.charAt(0) == '-') i++; else if (val.charAt(0) == '~') { i++; if (val.charAt(1) == '-') i++; } } for (; i < len; i++) { if (!isDigit(c = val.charAt(i))) { if (c == '.' && f) { f = false; } else { return false; } } } return len > 0; } public static boolean isNumber(char[] val, int start, int offset) { char c; boolean f = true; int i = start; int end = start + offset; if (offset > 1) { switch (val[start]) { case '-': if (val[start + 1] == '-') i++; case '~': i++; } } for (; i < end; i++) { if (!isDigit(c = val[i])) { if (f && c == '.') { f = false; } else if (offset != 1 && i == start + offset - 1) { switch (c) { case 'l': case 'L': case 'f': case 'F': case 'd': case 'D': case 'I': case 'B': return true; case '.': throw new CompileException("invalid number literal: " + new String(val), val, start); } return false; } else if (i == start + 1 && c == 'x' && val[start] == '0') { for (i++; i < end; i++) { if (!isDigit(c = val[i])) { if ((c < 'A' || c > 'F') && (c < 'a' || c > 'f')) { if (i == offset - 1) { switch (c) { case 'l': case 'L': case 'I': case 'B': return true; } } return false; } } } return offset - 2 > 0; } else if (i != start && (i + 1) < end && (c == 'E' || c == 'e')) { if (val[++i] == '-' || val[i] == '+') i++; } else { if (i != start) throw new CompileException("invalid number literal: " + new String(val, start, offset), val, start); return false; } } } return end > start; } public static int find(char[] c, int start, int offset, char find) { int length = start + offset; for (int i = start; i < length; i++) if (c[i] == find) return i; return -1; } public static int findLast(char[] c, int start, int offset, char find) { for (int i = start + offset; i >= start; i--) if (c[i] == find) return i; return -1; } public static String createStringTrimmed(char[] s) { int start = 0, end = s.length; while (start != end && s[start] < '\u0020' + 1) start++; while (end != start && s[end - 1] < '\u0020' + 1) end--; return new String(s, start, end - start); } public static String createStringTrimmed(char[] s, int start, int length) { if ((length = start + length) > s.length) return new String(s); while (start != length && s[start] < '\u0020' + 1) { start++; } while (length != start && s[length - 1] < '\u0020' + 1) { length--; } return new String(s, start, length - start); } public static boolean endsWith(char[] c, int start, int offset, char[] test) { if (test.length > c.length) return false; int tD = test.length - 1; int cD = start + offset - 1; while (tD >= 0) { if (c[cD--] != test[tD--]) return false; } return true; } public static boolean isIdentifierPart(final int c) { return ((c > 96 && c < 123) || (c > 64 && c < 91) || (c > 47 && c < 58) || (c == '_') || (c == '$') || Character.isJavaIdentifierPart(c)); } public static boolean isDigit(final int c) { return c > ('0' - 1) && c < ('9' + 1); } public static float similarity(String s1, String s2) { if (s1 == null || s2 == null) return s1 == null && s2 == null ? 1f : 0f; char[] c1 = s1.toCharArray(); char[] c2 = s2.toCharArray(); char[] comp; char[] against; float same = 0; float baselength; int cur1 = 0; if (c1.length > c2.length) { baselength = c1.length; comp = c1; against = c2; } else { baselength = c2.length; comp = c2; against = c1; } while (cur1 < comp.length && cur1 < against.length) { if (comp[cur1] == against[cur1]) { same++; } cur1++; } return same / baselength; } public static int findAbsoluteLast(char[] array) { int depth = 0; for (int i = array.length - 1; i >= 0; i--) { if (array[i] == ']') { depth++; } if (array[i] == '[') { depth--; } if (depth == 0 && array[i] == '.' || array[i] == '[') return i; } return -1; } public static Class getBaseComponentType(Class cls) { while (cls.isArray()) { cls = cls.getComponentType(); } return cls; } public static Class getSubComponentType(Class cls) { if (cls.isArray()) { cls = cls.getComponentType(); } return cls; } public static boolean isJunct(char c) { switch (c) { case '[': case '(': return true; default: return isWhitespace(c); } } public static int opLookup(char c) { switch (c) { case '|': return Operator.BW_OR; case '&': return Operator.BW_AND; case '^': return Operator.BW_XOR; case '*': return Operator.MULT; case '/': return Operator.DIV; case '+': return Operator.ADD; case '%': return Operator.MOD; case '\u00AB': return Operator.BW_SHIFT_LEFT; case '\u00BB': return Operator.BW_SHIFT_RIGHT; case '\u00AC': return Operator.BW_USHIFT_RIGHT; } return -1; } /** * Check if the specified string is a reserved word in the parser. * * @param name - * @return - */ public static boolean isReservedWord(String name) { return LITERALS.containsKey(name) || AbstractParser.OPERATORS.containsKey(name); } /** * Check if the specfied string represents a valid name of label. * * @param name - * @return - */ public static boolean isNotValidNameorLabel(String name) { for (char c : name.toCharArray()) { if (c == '.') return true; else if (!isIdentifierPart(c)) return true; } return false; } public static boolean isPropertyOnly(char[] array, int start, int end) { for (int i = start; i < end; i++) { if (!isIdentifierPart(array[i])) return false; } return true; } public static boolean isArrayType(char[] array, int start, int end) { return end > start + 2 && isPropertyOnly(array, start, end - 2) && array[end - 2] == '[' && array[end - 1] == ']'; } public static void checkNameSafety(String name) { if (isReservedWord(name)) { throw new RuntimeException("illegal use of reserved word: " + name); } else if (isDigit(name.charAt(0))) { throw new RuntimeException("not an identifier: " + name); } } public static FileWriter getDebugFileWriter() throws IOException { return new FileWriter(new File(getDebuggingOutputFileName()), true); } public static boolean isPrimitiveWrapper(Class clazz) { return clazz == Integer.class || clazz == Boolean.class || clazz == Long.class || clazz == Double.class || clazz == Float.class || clazz == Character.class || clazz == Short.class || clazz == Byte.class; } public static Serializable subCompileExpression(char[] expression) { return _optimizeTree(new ExpressionCompiler(expression)._compile()); } public static Serializable subCompileExpression(char[] expression, ParserContext ctx) { ExpressionCompiler c = new ExpressionCompiler(expression, ctx); return _optimizeTree(c._compile()); } public static Serializable subCompileExpression(char[] expression, int start, int offset, ParserContext ctx) { ExpressionCompiler c = new ExpressionCompiler(expression, start, offset, ctx); return _optimizeTree(c._compile()); } public static Serializable subCompileExpression(String expression, ParserContext ctx) { ExpressionCompiler c = new ExpressionCompiler(expression, ctx); return _optimizeTree(c._compile()); } public static Serializable optimizeTree(final CompiledExpression compiled) { /** * If there is only one token, and it's an identifier, we can optimize this as an accessor expression. */ if (!compiled.isImportInjectionRequired() && compiled.getParserConfiguration().isAllowBootstrapBypass() && compiled.isSingleNode()) { return _optimizeTree(compiled); } return compiled; } private static Serializable _optimizeTree(final CompiledExpression compiled) { /** * If there is only one token, and it's an identifier, we can optimize this as an accessor expression. */ if (compiled.isSingleNode()) { ASTNode tk = compiled.getFirstNode(); if (tk.isLiteral() && !tk.isThisVal()) { return new ExecutableLiteral(tk.getLiteralValue()); } return tk.canSerializeAccessor() ? new ExecutableAccessorSafe(tk, compiled.getKnownEgressType()) : new ExecutableAccessor(tk, compiled.getKnownEgressType()); } return compiled; } public static boolean isWhitespace(char c) { return c < '\u0020' + 1; } public static String repeatChar(char c, int times) { char[] n = new char[times]; for (int i = 0; i < times; i++) { n[i] = c; } return new String(n); } public static char[] loadFromFile(File file) throws IOException { return loadFromFile(file, null); } public static char[] loadFromFile(File file, String encoding) throws IOException { if (!file.exists()) throw new RuntimeException("cannot find file: " + file.getName()); FileInputStream inStream = null; ReadableByteChannel fc = null; try { fc = (inStream = new FileInputStream(file)).getChannel(); ByteBuffer buf = allocateDirect(10); StringAppender sb = new StringAppender((int) file.length(), encoding); int read = 0; while (read >= 0) { buf.rewind(); read = fc.read(buf); buf.rewind(); for (; read > 0; read--) { sb.append(buf.get()); } } //noinspection unchecked return sb.toChars(); } catch (FileNotFoundException e) { // this can't be thrown, we check for this explicitly. } finally { if (inStream != null) inStream.close(); if (fc != null) fc.close(); } return null; } public static char[] readIn(InputStream inStream, String encoding) throws IOException { try { byte[] buf = new byte[10]; StringAppender sb = new StringAppender(10, encoding); int bytesRead; while ((bytesRead = inStream.read(buf)) > 0) { for (int i = 0; i < bytesRead; i++) { sb.append(buf[i]); } } //noinspection unchecked return sb.toChars(); } finally { if (inStream != null) inStream.close(); } } public static Class forNameWithInner(String className, ClassLoader classLoader) throws ClassNotFoundException { try { return Class.forName(className, true, classLoader); } catch (ClassNotFoundException cnfe) { return findInnerClass( className, classLoader, cnfe ); } } public static Class findInnerClass( String className, ClassLoader classLoader, ClassNotFoundException cnfe ) throws ClassNotFoundException { for (int lastDotPos = className.lastIndexOf('.'); lastDotPos > 0; lastDotPos = className.lastIndexOf('.')) { className = className.substring(0, lastDotPos) + "$" + className.substring(lastDotPos+1); try { return Class.forName(className, true, classLoader); } catch (ClassNotFoundException e) { /* ignore */ } } throw cnfe; } }