/* This file is part of "MidpSSH". * * This file was adapted from Bouncy Castle JCE (www.bouncycastle.org) * for MidpSSH by Karl von Randow */ package ssh.v2; /** * A wrapper class that allows block ciphers to be used to process data in a * piecemeal fashion. The BufferedBlockCipher outputs a block only when the * buffer is full and more data is being added, or on a doFinal. * <p> * Note: in the case where the underlying cipher is either a CFB cipher or an * OFB one the last block may not be a multiple of the block size. */ public class BufferedDESedeCBC { protected byte[] buf; protected int bufOff; private byte[] IV; private byte[] cbcV; private byte[] cbcNextV; private boolean encrypting; protected static final int BLOCK_SIZE = 8; private int[] workingKey1 = null; private int[] workingKey2 = null; private int[] workingKey3 = null; /** * Create a buffered block cipher without padding. * * @param cipher * the underlying block cipher this buffering object wraps. */ public BufferedDESedeCBC() { this.IV = new byte[BLOCK_SIZE]; this.cbcV = new byte[BLOCK_SIZE]; this.cbcNextV = new byte[BLOCK_SIZE]; buf = new byte[BLOCK_SIZE]; bufOff = 0; } /** * initialise the cipher. * * @param forEncryption * if true the cipher is initialised for encryption, if false for * decryption. * @param params * the key and other data required by the cipher. * @exception IllegalArgumentException * if the params argument is inappropriate. */ public void init(boolean encrypting, byte[] iv, byte[] key) throws IllegalArgumentException { reset(); this.encrypting = encrypting; System.arraycopy(iv, 0, IV, 0, BLOCK_SIZE); reset(); byte[] key1 = new byte[8], key2 = new byte[8], key3 = new byte[8]; System.arraycopy(key, 0, key1, 0, key1.length); System.arraycopy(key, 8, key2, 0, key2.length); System.arraycopy(key, 16, key3, 0, key3.length); workingKey1 = generateWorkingKey(encrypting, key1); workingKey2 = generateWorkingKey(!encrypting, key2); workingKey3 = generateWorkingKey(encrypting, key3); } /** * return the size of the output buffer required for an update an input of * len bytes. * * @param len * the length of the input. * @return the space required to accommodate a call to update with len bytes * of input. */ public int getUpdateOutputSize(int len) { int total = len + bufOff; int leftOver; leftOver = total % buf.length; return total - leftOver; } /** * return the size of the output buffer required for an update plus a * doFinal with an input of len bytes. * * @param len * the length of the input. * @return the space required to accommodate a call to update and doFinal * with len bytes of input. */ public int getOutputSize(int len) { int total = len + bufOff; int leftOver; leftOver = total % buf.length; if (leftOver == 0) { return total; } return total - leftOver + buf.length; } /** * process a single byte, producing an output block if neccessary. * * @param in * the input byte. * @param out * the space for any output that might be produced. * @param outOff * the offset from which the output will be copied. * @return the number of output bytes copied to out. * @exception DataLengthException * if there isn't enough space in out. * @exception IllegalStateException * if the cipher isn't initialised. */ public int processByte(byte in, byte[] out, int outOff) throws IllegalStateException { int resultLen = 0; buf[bufOff++] = in; if (bufOff == buf.length) { resultLen = processBlock(buf, 0, out, outOff); bufOff = 0; } return resultLen; } /** * process an array of bytes, producing output if necessary. * * @param in * the input byte array. * @param inOff * the offset at which the input data starts. * @param len * the number of bytes to be copied out of the input array. * @param out * the space for any output that might be produced. * @param outOff * the offset from which the output will be copied. * @return the number of output bytes copied to out. * @exception DataLengthException * if there isn't enough space in out. * @exception IllegalStateException * if the cipher isn't initialised. */ public int processBytes(byte[] in, int inOff, int len, byte[] out, int outOff) throws IllegalStateException { if (len < 0) { throw new IllegalArgumentException( "Can't have a negative input length!"); } int length = getUpdateOutputSize(len); if (length > 0) { if ((outOff + length) > out.length) { throw new IllegalStateException("output buffer too short"); } } int resultLen = 0; int gapLen = buf.length - bufOff; if (len > gapLen) { System.arraycopy(in, inOff, buf, bufOff, gapLen); resultLen += processBlock(buf, 0, out, outOff); bufOff = 0; len -= gapLen; inOff += gapLen; while (len > buf.length) { resultLen += processBlock(in, inOff, out, outOff + resultLen); len -= BLOCK_SIZE; inOff += BLOCK_SIZE; } } System.arraycopy(in, inOff, buf, bufOff, len); bufOff += len; if (bufOff == buf.length) { resultLen += processBlock(buf, 0, out, outOff + resultLen); bufOff = 0; } return resultLen; } /** * Process the last block in the buffer. * * @param out * the array the block currently being held is copied into. * @param outOff * the offset at which the copying starts. * @return the number of output bytes copied to out. * @exception DataLengthException * if there is insufficient space in out for the output, or * the input is not block size aligned and should be. * @exception IllegalStateException * if the underlying cipher is not initialised. * @exception InvalidCipherTextException * if padding is expected and not found. * @exception DataLengthException * if the input is not block size aligned. */ public int doFinal(byte[] out, int outOff) throws IllegalStateException { int resultLen = 0; if (outOff + bufOff > out.length) { throw new IllegalStateException( "output buffer too short for doFinal()"); } if (bufOff != 0) { throw new IllegalStateException("data not block size aligned"); } reset(); return resultLen; } /** * Reset the buffer and cipher. After resetting the object is in the same * state as it was after the last init (if there was one). */ public void reset() { // // clean the buffer. // for (int i = 0; i < buf.length; i++) { buf[i] = 0; } bufOff = 0; // // reset the underlying cipher. // System.arraycopy(IV, 0, cbcV, 0, IV.length); } /** * Process one block of input from the array in and write it to the out * array. * * @param in * the array containing the input data. * @param inOff * offset into the in array the data starts at. * @param out * the array the output data will be copied into. * @param outOff * the offset into the out array the output will start at. * @exception DataLengthException * if there isn't enough data in in, or space in out. * @exception IllegalStateException * if the cipher isn't initialised. * @return the number of bytes processed and produced. */ public int processBlock(byte[] in, int inOff, byte[] out, int outOff) throws IllegalStateException { return (encrypting) ? encryptBlock(in, inOff, out, outOff) : decryptBlock(in, inOff, out, outOff); } /** * Do the appropriate chaining step for CBC mode encryption. * * @param in * the array containing the data to be encrypted. * @param inOff * offset into the in array the data starts at. * @param out * the array the encrypted data will be copied into. * @param outOff * the offset into the out array the output will start at. * @exception DataLengthException * if there isn't enough data in in, or space in out. * @exception IllegalStateException * if the cipher isn't initialised. * @return the number of bytes processed and produced. */ private int encryptBlock(byte[] in, int inOff, byte[] out, int outOff) throws IllegalStateException { if ((inOff + BLOCK_SIZE) > in.length) { throw new IllegalStateException("input buffer too short"); } /* * XOR the cbcV and the input, then encrypt the cbcV */ for (int i = 0; i < BLOCK_SIZE; i++) { cbcV[i] ^= in[inOff + i]; } int length = DESedeEngineProcessBlock(cbcV, 0, out, outOff); /* * copy ciphertext to cbcV */ System.arraycopy(out, outOff, cbcV, 0, cbcV.length); return length; } /** * Do the appropriate chaining step for CBC mode decryption. * * @param in * the array containing the data to be decrypted. * @param inOff * offset into the in array the data starts at. * @param out * the array the decrypted data will be copied into. * @param outOff * the offset into the out array the output will start at. * @exception DataLengthException * if there isn't enough data in in, or space in out. * @exception IllegalStateException * if the cipher isn't initialised. * @return the number of bytes processed and produced. */ private int decryptBlock(byte[] in, int inOff, byte[] out, int outOff) throws IllegalStateException { if ((inOff + BLOCK_SIZE) > in.length) { throw new IllegalStateException("input buffer too short"); } System.arraycopy(in, inOff, cbcNextV, 0, BLOCK_SIZE); int length = DESedeEngineProcessBlock(in, inOff, out, outOff); /* * XOR the cbcV and the output */ for (int i = 0; i < BLOCK_SIZE; i++) { out[outOff + i] ^= cbcV[i]; } /* * swap the back up buffer into next position */ byte[] tmp; tmp = cbcV; cbcV = cbcNextV; cbcNextV = tmp; return length; } public int DESedeEngineProcessBlock(byte[] in, int inOff, byte[] out, int outOff) { if (workingKey1 == null) { throw new IllegalStateException("DESede engine not initialised"); } if ((inOff + BLOCK_SIZE) > in.length) { throw new IllegalStateException("input buffer too short"); } if ((outOff + BLOCK_SIZE) > out.length) { throw new IllegalStateException("output buffer too short"); } if (encrypting) { desFunc(workingKey1, in, inOff, out, outOff); desFunc(workingKey2, out, outOff, out, outOff); desFunc(workingKey3, out, outOff, out, outOff); } else { desFunc(workingKey3, in, inOff, out, outOff); desFunc(workingKey2, out, outOff, out, outOff); desFunc(workingKey1, out, outOff, out, outOff); } return BLOCK_SIZE; } /** * what follows is mainly taken from "Applied Cryptography", by Bruce * Schneier, however it also bears great resemblance to Richard * Outerbridge's D3DES... */ static short[] Df_Key = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67 }; static short[] bytebit = { 0200, 0100, 040, 020, 010, 04, 02, 01 }; static int[] bigbyte = { 0x800000, 0x400000, 0x200000, 0x100000, 0x80000, 0x40000, 0x20000, 0x10000, 0x8000, 0x4000, 0x2000, 0x1000, 0x800, 0x400, 0x200, 0x100, 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1 }; /* * Use the key schedule specified in the Standard (ANSI X3.92-1981). */ static byte[] pc1 = { 56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3 }; static byte[] totrot = { 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 }; static byte[] pc2 = { 13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39, 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 }; static int[] SP1 = { 0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404, 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004 }; static int[] SP2 = { 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000 }; static int[] SP3 = { 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200 }; static int[] SP4 = { 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080 }; static int[] SP5 = { 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100 }; static int[] SP6 = { 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010 }; static int[] SP7 = { 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002 }; static int[] SP8 = { 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000 }; /** * generate an integer based working key based on our secret key and what we * processing we are planning to do. * * Acknowledgements for this routine go to James Gillogly & Phil Karn. * (whoever, and wherever they are!). */ protected int[] generateWorkingKey(boolean encrypting, byte[] key) { int[] newKey = new int[32]; boolean[] pc1m = new boolean[56], pcr = new boolean[56]; for (int j = 0; j < 56; j++) { int l = pc1[j]; pc1m[j] = ((key[l >>> 3] & bytebit[l & 07]) != 0); } for (int i = 0; i < 16; i++) { int l, m, n; if (encrypting) { m = i << 1; } else { m = (15 - i) << 1; } n = m + 1; newKey[m] = newKey[n] = 0; for (int j = 0; j < 28; j++) { l = j + totrot[i]; if (l < 28) { pcr[j] = pc1m[l]; } else { pcr[j] = pc1m[l - 28]; } } for (int j = 28; j < 56; j++) { l = j + totrot[i]; if (l < 56) { pcr[j] = pc1m[l]; } else { pcr[j] = pc1m[l - 28]; } } for (int j = 0; j < 24; j++) { if (pcr[pc2[j]]) { newKey[m] |= bigbyte[j]; } if (pcr[pc2[j + 24]]) { newKey[n] |= bigbyte[j]; } } } // // store the processed key // for (int i = 0; i != 32; i += 2) { int i1, i2; i1 = newKey[i]; i2 = newKey[i + 1]; newKey[i] = ((i1 & 0x00fc0000) << 6) | ((i1 & 0x00000fc0) << 10) | ((i2 & 0x00fc0000) >>> 10) | ((i2 & 0x00000fc0) >>> 6); newKey[i + 1] = ((i1 & 0x0003f000) << 12) | ((i1 & 0x0000003f) << 16) | ((i2 & 0x0003f000) >>> 4) | (i2 & 0x0000003f); } return newKey; } /** * the DES engine. */ protected void desFunc(int[] wKey, byte[] in, int inOff, byte[] out, int outOff) { int work, right, left; left = (in[inOff + 0] & 0xff) << 24; left |= (in[inOff + 1] & 0xff) << 16; left |= (in[inOff + 2] & 0xff) << 8; left |= (in[inOff + 3] & 0xff); right = (in[inOff + 4] & 0xff) << 24; right |= (in[inOff + 5] & 0xff) << 16; right |= (in[inOff + 6] & 0xff) << 8; right |= (in[inOff + 7] & 0xff); work = ((left >>> 4) ^ right) & 0x0f0f0f0f; right ^= work; left ^= (work << 4); work = ((left >>> 16) ^ right) & 0x0000ffff; right ^= work; left ^= (work << 16); work = ((right >>> 2) ^ left) & 0x33333333; left ^= work; right ^= (work << 2); work = ((right >>> 8) ^ left) & 0x00ff00ff; left ^= work; right ^= (work << 8); right = ((right << 1) | ((right >>> 31) & 1)) & 0xffffffff; work = (left ^ right) & 0xaaaaaaaa; left ^= work; right ^= work; left = ((left << 1) | ((left >>> 31) & 1)) & 0xffffffff; for (int round = 0; round < 8; round++) { int fval; work = (right << 28) | (right >>> 4); work ^= wKey[round * 4 + 0]; fval = SP7[work & 0x3f]; fval |= SP5[(work >>> 8) & 0x3f]; fval |= SP3[(work >>> 16) & 0x3f]; fval |= SP1[(work >>> 24) & 0x3f]; work = right ^ wKey[round * 4 + 1]; fval |= SP8[work & 0x3f]; fval |= SP6[(work >>> 8) & 0x3f]; fval |= SP4[(work >>> 16) & 0x3f]; fval |= SP2[(work >>> 24) & 0x3f]; left ^= fval; work = (left << 28) | (left >>> 4); work ^= wKey[round * 4 + 2]; fval = SP7[work & 0x3f]; fval |= SP5[(work >>> 8) & 0x3f]; fval |= SP3[(work >>> 16) & 0x3f]; fval |= SP1[(work >>> 24) & 0x3f]; work = left ^ wKey[round * 4 + 3]; fval |= SP8[work & 0x3f]; fval |= SP6[(work >>> 8) & 0x3f]; fval |= SP4[(work >>> 16) & 0x3f]; fval |= SP2[(work >>> 24) & 0x3f]; right ^= fval; } right = (right << 31) | (right >>> 1); work = (left ^ right) & 0xaaaaaaaa; left ^= work; right ^= work; left = (left << 31) | (left >>> 1); work = ((left >>> 8) ^ right) & 0x00ff00ff; right ^= work; left ^= (work << 8); work = ((left >>> 2) ^ right) & 0x33333333; right ^= work; left ^= (work << 2); work = ((right >>> 16) ^ left) & 0x0000ffff; left ^= work; right ^= (work << 16); work = ((right >>> 4) ^ left) & 0x0f0f0f0f; left ^= work; right ^= (work << 4); out[outOff + 0] = (byte) ((right >>> 24) & 0xff); out[outOff + 1] = (byte) ((right >>> 16) & 0xff); out[outOff + 2] = (byte) ((right >>> 8) & 0xff); out[outOff + 3] = (byte) (right & 0xff); out[outOff + 4] = (byte) ((left >>> 24) & 0xff); out[outOff + 5] = (byte) ((left >>> 16) & 0xff); out[outOff + 6] = (byte) ((left >>> 8) & 0xff); out[outOff + 7] = (byte) (left & 0xff); } }