// License: GPL. Copyright 2007 by Immanuel Scholz and others package org.openstreetmap.josm.data.projection; import static org.openstreetmap.josm.tools.I18n.tr; import java.awt.GridBagLayout; import java.util.Collection; import java.util.Collections; import javax.swing.JComboBox; import javax.swing.JLabel; import javax.swing.JPanel; import org.openstreetmap.josm.data.Bounds; import org.openstreetmap.josm.data.coor.EastNorth; import org.openstreetmap.josm.data.coor.LatLon; import org.openstreetmap.josm.tools.GBC; /** * Directly use latitude / longitude values as x/y. * * @author Dirk Stöcker * code based on JavaScript from Chuck Taylor */ public class UTM implements Projection, ProjectionSubPrefs { public static final int DEFAULT_ZONE = 30; private int zone = DEFAULT_ZONE; final private static double UTMScaleFactor = 0.9996; /* Ellipsoid model constants (WGS84) - TODO Use Elliposid class here too */ //final private double sm_EccSquared = 6.69437999013e-03; /* * ArcLengthOfMeridian * * Computes the ellipsoidal distance from the equator to a point at a * given latitude. * * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. * * Inputs: * phi - Latitude of the point, in radians. * * Globals: * Ellipsoid.GRS80.a - Ellipsoid model major axis. * Ellipsoid.GRS80.b - Ellipsoid model minor axis. * * Returns: * The ellipsoidal distance of the point from the equator, in meters. * */ private double ArcLengthOfMeridian(double phi) { /* Precalculate n */ double n = (Ellipsoid.GRS80.a - Ellipsoid.GRS80.b) / (Ellipsoid.GRS80.a + Ellipsoid.GRS80.b); /* Precalculate alpha */ double alpha = ((Ellipsoid.GRS80.a + Ellipsoid.GRS80.b) / 2.0) * (1.0 + (Math.pow (n, 2.0) / 4.0) + (Math.pow (n, 4.0) / 64.0)); /* Precalculate beta */ double beta = (-3.0 * n / 2.0) + (9.0 * Math.pow (n, 3.0) / 16.0) + (-3.0 * Math.pow (n, 5.0) / 32.0); /* Precalculate gamma */ double gamma = (15.0 * Math.pow (n, 2.0) / 16.0) + (-15.0 * Math.pow (n, 4.0) / 32.0); /* Precalculate delta */ double delta = (-35.0 * Math.pow (n, 3.0) / 48.0) + (105.0 * Math.pow (n, 5.0) / 256.0); /* Precalculate epsilon */ double epsilon = (315.0 * Math.pow (n, 4.0) / 512.0); /* Now calculate the sum of the series and return */ return alpha * (phi + (beta * Math.sin (2.0 * phi)) + (gamma * Math.sin (4.0 * phi)) + (delta * Math.sin (6.0 * phi)) + (epsilon * Math.sin (8.0 * phi))); } /* * UTMCentralMeridian * * Determines the central meridian for the given UTM zone. * * Inputs: * zone - An integer value designating the UTM zone, range [1,60]. * * Returns: * The central meridian for the given UTM zone, in radians, or zero * if the UTM zone parameter is outside the range [1,60]. * Range of the central meridian is the radian equivalent of [-177,+177]. * */ private double UTMCentralMeridian(int zone) { return Math.toRadians(-183.0 + (zone * 6.0)); } private double UTMCentralMeridianDeg(int zone) { return -183.0 + (zone * 6.0); } /* * FootpointLatitude * * Computes the footpoint latitude for use in converting transverse * Mercator coordinates to ellipsoidal coordinates. * * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. * * Inputs: * y - The UTM northing coordinate, in meters. * * Returns: * The footpoint latitude, in radians. * */ private double FootpointLatitude(double y) { /* Precalculate n (Eq. 10.18) */ double n = (Ellipsoid.GRS80.a - Ellipsoid.GRS80.b) / (Ellipsoid.GRS80.a + Ellipsoid.GRS80.b); /* Precalculate alpha_ (Eq. 10.22) */ /* (Same as alpha in Eq. 10.17) */ double alpha_ = ((Ellipsoid.GRS80.a + Ellipsoid.GRS80.b) / 2.0) * (1 + (Math.pow (n, 2.0) / 4) + (Math.pow (n, 4.0) / 64)); /* Precalculate y_ (Eq. 10.23) */ double y_ = y / alpha_; /* Precalculate beta_ (Eq. 10.22) */ double beta_ = (3.0 * n / 2.0) + (-27.0 * Math.pow (n, 3.0) / 32.0) + (269.0 * Math.pow (n, 5.0) / 512.0); /* Precalculate gamma_ (Eq. 10.22) */ double gamma_ = (21.0 * Math.pow (n, 2.0) / 16.0) + (-55.0 * Math.pow (n, 4.0) / 32.0); /* Precalculate delta_ (Eq. 10.22) */ double delta_ = (151.0 * Math.pow (n, 3.0) / 96.0) + (-417.0 * Math.pow (n, 5.0) / 128.0); /* Precalculate epsilon_ (Eq. 10.22) */ double epsilon_ = (1097.0 * Math.pow (n, 4.0) / 512.0); /* Now calculate the sum of the series (Eq. 10.21) */ return y_ + (beta_ * Math.sin (2.0 * y_)) + (gamma_ * Math.sin (4.0 * y_)) + (delta_ * Math.sin (6.0 * y_)) + (epsilon_ * Math.sin (8.0 * y_)); } /* * MapLatLonToXY * * Converts a latitude/longitude pair to x and y coordinates in the * Transverse Mercator projection. Note that Transverse Mercator is not * the same as UTM; a scale factor is required to convert between them. * * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. * * Inputs: * phi - Latitude of the point, in radians. * lambda - Longitude of the point, in radians. * lambda0 - Longitude of the central meridian to be used, in radians. * * Outputs: * xy - A 2-element array containing the x and y coordinates * of the computed point. * * Returns: * The function does not return a value. * */ public EastNorth mapLatLonToXY(double phi, double lambda, double lambda0) { /* Precalculate ep2 */ double ep2 = (Math.pow (Ellipsoid.GRS80.a, 2.0) - Math.pow (Ellipsoid.GRS80.b, 2.0)) / Math.pow (Ellipsoid.GRS80.b, 2.0); /* Precalculate nu2 */ double nu2 = ep2 * Math.pow (Math.cos (phi), 2.0); /* Precalculate N */ double N = Math.pow (Ellipsoid.GRS80.a, 2.0) / (Ellipsoid.GRS80.b * Math.sqrt (1 + nu2)); /* Precalculate t */ double t = Math.tan (phi); double t2 = t * t; /* Precalculate l */ double l = lambda - lambda0; /* Precalculate coefficients for l**n in the equations below so a normal human being can read the expressions for easting and northing -- l**1 and l**2 have coefficients of 1.0 */ double l3coef = 1.0 - t2 + nu2; double l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2); double l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2 - 58.0 * t2 * nu2; double l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2 - 330.0 * t2 * nu2; double l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2); double l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2); return new EastNorth( /* Calculate easting (x) */ N * Math.cos (phi) * l + (N / 6.0 * Math.pow (Math.cos (phi), 3.0) * l3coef * Math.pow (l, 3.0)) + (N / 120.0 * Math.pow (Math.cos (phi), 5.0) * l5coef * Math.pow (l, 5.0)) + (N / 5040.0 * Math.pow (Math.cos (phi), 7.0) * l7coef * Math.pow (l, 7.0)), /* Calculate northing (y) */ ArcLengthOfMeridian (phi) + (t / 2.0 * N * Math.pow (Math.cos (phi), 2.0) * Math.pow (l, 2.0)) + (t / 24.0 * N * Math.pow (Math.cos (phi), 4.0) * l4coef * Math.pow (l, 4.0)) + (t / 720.0 * N * Math.pow (Math.cos (phi), 6.0) * l6coef * Math.pow (l, 6.0)) + (t / 40320.0 * N * Math.pow (Math.cos (phi), 8.0) * l8coef * Math.pow (l, 8.0))); } /* * MapXYToLatLon * * Converts x and y coordinates in the Transverse Mercator projection to * a latitude/longitude pair. Note that Transverse Mercator is not * the same as UTM; a scale factor is required to convert between them. * * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. * * Inputs: * x - The easting of the point, in meters. * y - The northing of the point, in meters. * lambda0 - Longitude of the central meridian to be used, in radians. * * Outputs: * philambda - A 2-element containing the latitude and longitude * in radians. * * Returns: * The function does not return a value. * * Remarks: * The local variables Nf, nuf2, tf, and tf2 serve the same purpose as * N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect * to the footpoint latitude phif. * * x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and * to optimize computations. * */ public LatLon mapXYToLatLon(double x, double y, double lambda0) { /* Get the value of phif, the footpoint latitude. */ double phif = FootpointLatitude (y); /* Precalculate ep2 */ double ep2 = (Math.pow (Ellipsoid.GRS80.a, 2.0) - Math.pow (Ellipsoid.GRS80.b, 2.0)) / Math.pow (Ellipsoid.GRS80.b, 2.0); /* Precalculate cos (phif) */ double cf = Math.cos (phif); /* Precalculate nuf2 */ double nuf2 = ep2 * Math.pow (cf, 2.0); /* Precalculate Nf and initialize Nfpow */ double Nf = Math.pow (Ellipsoid.GRS80.a, 2.0) / (Ellipsoid.GRS80.b * Math.sqrt (1 + nuf2)); double Nfpow = Nf; /* Precalculate tf */ double tf = Math.tan (phif); double tf2 = tf * tf; double tf4 = tf2 * tf2; /* Precalculate fractional coefficients for x**n in the equations below to simplify the expressions for latitude and longitude. */ double x1frac = 1.0 / (Nfpow * cf); Nfpow *= Nf; /* now equals Nf**2) */ double x2frac = tf / (2.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**3) */ double x3frac = 1.0 / (6.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**4) */ double x4frac = tf / (24.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**5) */ double x5frac = 1.0 / (120.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**6) */ double x6frac = tf / (720.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**7) */ double x7frac = 1.0 / (5040.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**8) */ double x8frac = tf / (40320.0 * Nfpow); /* Precalculate polynomial coefficients for x**n. -- x**1 does not have a polynomial coefficient. */ double x2poly = -1.0 - nuf2; double x3poly = -1.0 - 2 * tf2 - nuf2; double x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2 - 3.0 * (nuf2 *nuf2) - 9.0 * tf2 * (nuf2 * nuf2); double x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2; double x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2 + 162.0 * tf2 * nuf2; double x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2); double x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2); return new LatLon( /* Calculate latitude */ Math.toDegrees( phif + x2frac * x2poly * (x * x) + x4frac * x4poly * Math.pow (x, 4.0) + x6frac * x6poly * Math.pow (x, 6.0) + x8frac * x8poly * Math.pow (x, 8.0)), Math.toDegrees( /* Calculate longitude */ lambda0 + x1frac * x + x3frac * x3poly * Math.pow (x, 3.0) + x5frac * x5poly * Math.pow (x, 5.0) + x7frac * x7poly * Math.pow (x, 7.0))); } public EastNorth latlon2eastNorth(LatLon p) { EastNorth a = mapLatLonToXY(Math.toRadians(p.lat()), Math.toRadians(p.lon()), UTMCentralMeridian(getzone())); return new EastNorth(a.east() * UTMScaleFactor + 3500000.0, a.north() * UTMScaleFactor); } public LatLon eastNorth2latlon(EastNorth p) { return mapXYToLatLon((p.east()-3500000.0)/UTMScaleFactor, p.north()/UTMScaleFactor, UTMCentralMeridian(getzone())); } @Override public String toString() { return tr("UTM"); } public int getzone() { return zone; } public String toCode() { return "EPSG:"+ (325800 + getzone()); } @Override public int hashCode() { return getClass().getName().hashCode()+zone; // our only real variable } public String getCacheDirectoryName() { return "epsg"+ (325800 + getzone()); } public Bounds getWorldBoundsLatLon() { return new Bounds( new LatLon(-85.0, UTMCentralMeridianDeg(getzone())-5.0), new LatLon(85.0, UTMCentralMeridianDeg(getzone())+5.0)); } public double getDefaultZoomInPPD() { // this will set the map scaler to about 1000 m return 10; } public void setupPreferencePanel(JPanel p) { JComboBox prefcb = new JComboBox(); for(int i = 1; i <= 60; i++) { prefcb.addItem(i); } prefcb.setSelectedIndex(zone - 1); p.setLayout(new GridBagLayout()); p.add(new JLabel(tr("UTM Zone")), GBC.std().insets(5,5,0,5)); p.add(GBC.glue(1, 0), GBC.std().fill(GBC.HORIZONTAL)); /* Note: we use component position 2 below to find this again */ p.add(prefcb, GBC.eop().fill(GBC.HORIZONTAL)); p.add(GBC.glue(1, 1), GBC.eol().fill(GBC.BOTH)); } public Collection<String> getPreferences(JPanel p) { Object prefcb = p.getComponent(2); if(!(prefcb instanceof JComboBox)) return null; int zone = ((JComboBox)prefcb).getSelectedIndex() + 1; return Collections.singleton(Integer.toString(zone)); } public void setPreferences(Collection<String> args) { zone = DEFAULT_ZONE; if(args != null) { try { for(String s : args) { zone = Integer.parseInt(s); if(zone <= 0 || zone > 60) { zone = DEFAULT_ZONE; } break; } } catch(NumberFormatException e) {} } } public Collection<String> getPreferencesFromCode(String code) { if(code.startsWith("EPSG:3258")) { try { String zonestring = code.substring(9); int zoneval = Integer.parseInt(zonestring); if(zoneval > 0 && zoneval <= 60) return Collections.singleton(zonestring); } catch(NumberFormatException e) {} } return null; } }