/* * @(#)Arrays.java 1.59 04/04/01 * * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package tests.java15.util; import tests.java15.lang.Math; /** * This class contains various methods for manipulating arrays (such as * sorting and searching). This class also contains a static factory * that allows arrays to be viewed as lists. * * <p>The methods in this class all throw a <tt>NullPointerException</tt> if * the specified array reference is null, except where noted. * * <p>The documentation for the methods contained in this class includes * briefs description of the <i>implementations</i>. Such descriptions should * be regarded as <i>implementation notes</i>, rather than parts of the * <i>specification</i>. Implementors should feel free to substitute other * algorithms, so long as the specification itself is adhered to. (For * example, the algorithm used by <tt>sort(Object[])</tt> does not have to be * a mergesort, but it does have to be <i>stable</i>.) * * <p>This class is a member of the * <a href="{@docRoot}/../guide/collections/index.html"> * Java Collections Framework</a>. * * @author Josh Bloch * @author Neal Gafter * @version 1.59, 04/01/04 * @see Comparable * @see Comparator * @since 1.2 */ public class Arrays { // Suppresses default constructor, ensuring non-instantiability. private Arrays() { } // Sorting /** * Sorts the specified array of ints into ascending numerical order. * The sorting algorithm is a tuned quicksort, adapted from Jon * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November * 1993). This algorithm offers n*log(n) performance on many data sets * that cause other quicksorts to degrade to quadratic performance. * * @param a the array to be sorted. */ public static void sort(int[] a) { sort1(a, 0, a.length); } /** * Sorts the specified sub-array of integers into ascending order. */ private static void sort1(int x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; /* if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } */ m = med3(x, l, m, n); // Mid-size, med of 3 } int v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(int x[], int a, int b) { int t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(int x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed integers. */ private static int med3(int x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified array of objects into ascending order, according to * the <i>natural ordering</i> of its elements. All elements in the array * must implement the <tt>Comparable</tt> interface. Furthermore, all * elements in the array must be <i>mutually comparable</i> (that is, * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt> * for any elements <tt>e1</tt> and <tt>e2</tt> in the array).<p> * * This sort is guaranteed to be <i>stable</i>: equal elements will * not be reordered as a result of the sort.<p> * * The sorting algorithm is a modified mergesort (in which the merge is * omitted if the highest element in the low sublist is less than the * lowest element in the high sublist). This algorithm offers guaranteed * n*log(n) performance. * * @param a the array to be sorted. * @throws ClassCastException if the array contains elements that are not * <i>mutually comparable</i> (for example, strings and integers). * @see Comparable */ public static void sort(Object[] a) { Object[] aux = (Object[])a.clone(); mergeSort(aux, a, 0, a.length, 0); } /** * Tuning parameter: list size at or below which insertion sort will be * used in preference to mergesort or quicksort. */ private static final int INSERTIONSORT_THRESHOLD = 7; /** * Src is the source array that starts at index 0 * Dest is the (possibly larger) array destination with a possible offset * low is the index in dest to start sorting * high is the end index in dest to end sorting * off is the offset to generate corresponding low, high in src */ private static void mergeSort(Object[] src, Object[] dest, int low, int high, int off) { int length = high - low; // Insertion sort on smallest arrays if (length < INSERTIONSORT_THRESHOLD) { for (int i=low; i<high; i++) for (int j=i; j>low && ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--) swap(dest, j, j-1); return; } // Recursively sort halves of dest into src int destLow = low; int destHigh = high; low += off; high += off; int mid = (low + high) >> 1; mergeSort(dest, src, low, mid, -off); mergeSort(dest, src, mid, high, -off); // If list is already sorted, just copy from src to dest. This is an // optimization that results in faster sorts for nearly ordered lists. if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) { System.arraycopy(src, low, dest, destLow, length); return; } // Merge sorted halves (now in src) into dest for(int i = destLow, p = low, q = mid; i < destHigh; i++) { if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0) dest[i] = src[p++]; else dest[i] = src[q++]; } } /** * Swaps x[a] with x[b]. */ private static void swap(Object[] x, int a, int b) { Object t = x[a]; x[a] = x[b]; x[b] = t; } }