/** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.hbase.io.hfile; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertTrue; import java.nio.ByteBuffer; import java.util.Collection; import java.util.Map; import java.util.Random; import org.apache.hadoop.hbase.HBaseTestingUtility; import org.apache.hadoop.hbase.SmallTests; import org.apache.hadoop.hbase.io.HeapSize; import org.apache.hadoop.hbase.io.hfile.LruBlockCache.EvictionThread; import org.apache.hadoop.hbase.util.ClassSize; import org.junit.After; import org.junit.Before; import org.junit.Test; import org.junit.experimental.categories.Category; import org.junit.runner.RunWith; import org.junit.runners.Parameterized; import org.junit.runners.Parameterized.Parameters; /** * Tests the concurrent LruBlockCache.<p> * * Tests will ensure it grows and shrinks in size properly, * evictions run when they're supposed to and do what they should, * and that cached blocks are accessible when expected to be. */ @Category(SmallTests.class) public class TestLruBlockCache { @Test public void testBackgroundEvictionThread() throws Exception { long maxSize = 100000; long blockSize = calculateBlockSizeDefault(maxSize, 9); // room for 9, will evict LruBlockCache cache = new LruBlockCache(maxSize,blockSize); CachedItem [] blocks = generateFixedBlocks(10, blockSize, "block"); EvictionThread evictionThread = cache.getEvictionThread(); assertTrue(evictionThread != null); // Make sure eviction thread has entered run method while (!evictionThread.isEnteringRun()) { Thread.sleep(1); } // Add all the blocks for (CachedItem block : blocks) { cache.cacheBlock(block.cacheKey, block); } // Let the eviction run int n = 0; while(cache.getEvictionCount() == 0) { Thread.sleep(200); assertTrue(n++ < 10); } System.out.println("Background Evictions run: " + cache.getEvictionCount()); // A single eviction run should have occurred assertEquals(cache.getEvictionCount(), 1); } @Test public void testCacheSimple() throws Exception { long maxSize = 1000000; long blockSize = calculateBlockSizeDefault(maxSize, 101); LruBlockCache cache = new LruBlockCache(maxSize, blockSize); CachedItem [] blocks = generateRandomBlocks(100, blockSize); long expectedCacheSize = cache.heapSize(); // Confirm empty for (CachedItem block : blocks) { assertTrue(cache.getBlock(block.cacheKey, true, false) == null); } // Add blocks for (CachedItem block : blocks) { cache.cacheBlock(block.cacheKey, block); expectedCacheSize += block.cacheBlockHeapSize(); } // Verify correctly calculated cache heap size assertEquals(expectedCacheSize, cache.heapSize()); // Check if all blocks are properly cached and retrieved for (CachedItem block : blocks) { HeapSize buf = cache.getBlock(block.cacheKey, true, false); assertTrue(buf != null); assertEquals(buf.heapSize(), block.heapSize()); } // Re-add same blocks and ensure nothing has changed for (CachedItem block : blocks) { try { cache.cacheBlock(block.cacheKey, block); assertTrue("Cache should not allow re-caching a block", false); } catch(RuntimeException re) { // expected } } // Verify correctly calculated cache heap size assertEquals(expectedCacheSize, cache.heapSize()); // Check if all blocks are properly cached and retrieved for (CachedItem block : blocks) { HeapSize buf = cache.getBlock(block.cacheKey, true, false); assertTrue(buf != null); assertEquals(buf.heapSize(), block.heapSize()); } // Expect no evictions assertEquals(0, cache.getEvictionCount()); Thread t = new LruBlockCache.StatisticsThread(cache); t.start(); t.join(); } @Test public void testCacheEvictionSimple() throws Exception { long maxSize = 100000; long blockSize = calculateBlockSizeDefault(maxSize, 10); LruBlockCache cache = new LruBlockCache(maxSize,blockSize,false); CachedItem [] blocks = generateFixedBlocks(10, blockSize, "block"); long expectedCacheSize = cache.heapSize(); // Add all the blocks for (CachedItem block : blocks) { cache.cacheBlock(block.cacheKey, block); expectedCacheSize += block.cacheBlockHeapSize(); } // A single eviction run should have occurred assertEquals(1, cache.getEvictionCount()); // Our expected size overruns acceptable limit assertTrue(expectedCacheSize > (maxSize * LruBlockCache.DEFAULT_ACCEPTABLE_FACTOR)); // But the cache did not grow beyond max assertTrue(cache.heapSize() < maxSize); // And is still below the acceptable limit assertTrue(cache.heapSize() < (maxSize * LruBlockCache.DEFAULT_ACCEPTABLE_FACTOR)); // All blocks except block 0 should be in the cache assertTrue(cache.getBlock(blocks[0].cacheKey, true, false) == null); for(int i=1;i<blocks.length;i++) { assertEquals(cache.getBlock(blocks[i].cacheKey, true, false), blocks[i]); } } @Test public void testCacheEvictionTwoPriorities() throws Exception { long maxSize = 100000; long blockSize = calculateBlockSizeDefault(maxSize, 10); LruBlockCache cache = new LruBlockCache(maxSize,blockSize,false); CachedItem [] singleBlocks = generateFixedBlocks(5, 10000, "single"); CachedItem [] multiBlocks = generateFixedBlocks(5, 10000, "multi"); long expectedCacheSize = cache.heapSize(); // Add and get the multi blocks for (CachedItem block : multiBlocks) { cache.cacheBlock(block.cacheKey, block); expectedCacheSize += block.cacheBlockHeapSize(); assertEquals(cache.getBlock(block.cacheKey, true, false), block); } // Add the single blocks (no get) for (CachedItem block : singleBlocks) { cache.cacheBlock(block.cacheKey, block); expectedCacheSize += block.heapSize(); } // A single eviction run should have occurred assertEquals(cache.getEvictionCount(), 1); // We expect two entries evicted assertEquals(cache.getEvictedCount(), 2); // Our expected size overruns acceptable limit assertTrue(expectedCacheSize > (maxSize * LruBlockCache.DEFAULT_ACCEPTABLE_FACTOR)); // But the cache did not grow beyond max assertTrue(cache.heapSize() <= maxSize); // And is now below the acceptable limit assertTrue(cache.heapSize() <= (maxSize * LruBlockCache.DEFAULT_ACCEPTABLE_FACTOR)); // We expect fairness across the two priorities. // This test makes multi go barely over its limit, in-memory // empty, and the rest in single. Two single evictions and // one multi eviction expected. assertTrue(cache.getBlock(singleBlocks[0].cacheKey, true, false) == null); assertTrue(cache.getBlock(multiBlocks[0].cacheKey, true, false) == null); // And all others to be cached for(int i=1;i<4;i++) { assertEquals(cache.getBlock(singleBlocks[i].cacheKey, true, false), singleBlocks[i]); assertEquals(cache.getBlock(multiBlocks[i].cacheKey, true, false), multiBlocks[i]); } } @Test public void testCacheEvictionThreePriorities() throws Exception { long maxSize = 100000; long blockSize = calculateBlockSize(maxSize, 10); LruBlockCache cache = new LruBlockCache(maxSize, blockSize, false, (int)Math.ceil(1.2*maxSize/blockSize), LruBlockCache.DEFAULT_LOAD_FACTOR, LruBlockCache.DEFAULT_CONCURRENCY_LEVEL, 0.98f, // min 0.99f, // acceptable 0.33f, // single 0.33f, // multi 0.34f);// memory CachedItem [] singleBlocks = generateFixedBlocks(5, blockSize, "single"); CachedItem [] multiBlocks = generateFixedBlocks(5, blockSize, "multi"); CachedItem [] memoryBlocks = generateFixedBlocks(5, blockSize, "memory"); long expectedCacheSize = cache.heapSize(); // Add 3 blocks from each priority for(int i=0;i<3;i++) { // Just add single blocks cache.cacheBlock(singleBlocks[i].cacheKey, singleBlocks[i]); expectedCacheSize += singleBlocks[i].cacheBlockHeapSize(); // Add and get multi blocks cache.cacheBlock(multiBlocks[i].cacheKey, multiBlocks[i]); expectedCacheSize += multiBlocks[i].cacheBlockHeapSize(); cache.getBlock(multiBlocks[i].cacheKey, true, false); // Add memory blocks as such cache.cacheBlock(memoryBlocks[i].cacheKey, memoryBlocks[i], true); expectedCacheSize += memoryBlocks[i].cacheBlockHeapSize(); } // Do not expect any evictions yet assertEquals(0, cache.getEvictionCount()); // Verify cache size assertEquals(expectedCacheSize, cache.heapSize()); // Insert a single block, oldest single should be evicted cache.cacheBlock(singleBlocks[3].cacheKey, singleBlocks[3]); // Single eviction, one thing evicted assertEquals(1, cache.getEvictionCount()); assertEquals(1, cache.getEvictedCount()); // Verify oldest single block is the one evicted assertEquals(null, cache.getBlock(singleBlocks[0].cacheKey, true, false)); // Change the oldest remaining single block to a multi cache.getBlock(singleBlocks[1].cacheKey, true, false); // Insert another single block cache.cacheBlock(singleBlocks[4].cacheKey, singleBlocks[4]); // Two evictions, two evicted. assertEquals(2, cache.getEvictionCount()); assertEquals(2, cache.getEvictedCount()); // Oldest multi block should be evicted now assertEquals(null, cache.getBlock(multiBlocks[0].cacheKey, true, false)); // Insert another memory block cache.cacheBlock(memoryBlocks[3].cacheKey, memoryBlocks[3], true); // Three evictions, three evicted. assertEquals(3, cache.getEvictionCount()); assertEquals(3, cache.getEvictedCount()); // Oldest memory block should be evicted now assertEquals(null, cache.getBlock(memoryBlocks[0].cacheKey, true, false)); // Add a block that is twice as big (should force two evictions) CachedItem [] bigBlocks = generateFixedBlocks(3, blockSize*3, "big"); cache.cacheBlock(bigBlocks[0].cacheKey, bigBlocks[0]); // Four evictions, six evicted (inserted block 3X size, expect +3 evicted) assertEquals(4, cache.getEvictionCount()); assertEquals(6, cache.getEvictedCount()); // Expect three remaining singles to be evicted assertEquals(null, cache.getBlock(singleBlocks[2].cacheKey, true, false)); assertEquals(null, cache.getBlock(singleBlocks[3].cacheKey, true, false)); assertEquals(null, cache.getBlock(singleBlocks[4].cacheKey, true, false)); // Make the big block a multi block cache.getBlock(bigBlocks[0].cacheKey, true, false); // Cache another single big block cache.cacheBlock(bigBlocks[1].cacheKey, bigBlocks[1]); // Five evictions, nine evicted (3 new) assertEquals(5, cache.getEvictionCount()); assertEquals(9, cache.getEvictedCount()); // Expect three remaining multis to be evicted assertEquals(null, cache.getBlock(singleBlocks[1].cacheKey, true, false)); assertEquals(null, cache.getBlock(multiBlocks[1].cacheKey, true, false)); assertEquals(null, cache.getBlock(multiBlocks[2].cacheKey, true, false)); // Cache a big memory block cache.cacheBlock(bigBlocks[2].cacheKey, bigBlocks[2], true); // Six evictions, twelve evicted (3 new) assertEquals(6, cache.getEvictionCount()); assertEquals(12, cache.getEvictedCount()); // Expect three remaining in-memory to be evicted assertEquals(null, cache.getBlock(memoryBlocks[1].cacheKey, true, false)); assertEquals(null, cache.getBlock(memoryBlocks[2].cacheKey, true, false)); assertEquals(null, cache.getBlock(memoryBlocks[3].cacheKey, true, false)); } // test scan resistance @Test public void testScanResistance() throws Exception { long maxSize = 100000; long blockSize = calculateBlockSize(maxSize, 10); LruBlockCache cache = new LruBlockCache(maxSize, blockSize, false, (int)Math.ceil(1.2*maxSize/blockSize), LruBlockCache.DEFAULT_LOAD_FACTOR, LruBlockCache.DEFAULT_CONCURRENCY_LEVEL, 0.66f, // min 0.99f, // acceptable 0.33f, // single 0.33f, // multi 0.34f);// memory CachedItem [] singleBlocks = generateFixedBlocks(20, blockSize, "single"); CachedItem [] multiBlocks = generateFixedBlocks(5, blockSize, "multi"); // Add 5 multi blocks for (CachedItem block : multiBlocks) { cache.cacheBlock(block.cacheKey, block); cache.getBlock(block.cacheKey, true, false); } // Add 5 single blocks for(int i=0;i<5;i++) { cache.cacheBlock(singleBlocks[i].cacheKey, singleBlocks[i]); } // An eviction ran assertEquals(1, cache.getEvictionCount()); // To drop down to 2/3 capacity, we'll need to evict 4 blocks assertEquals(4, cache.getEvictedCount()); // Should have been taken off equally from single and multi assertEquals(null, cache.getBlock(singleBlocks[0].cacheKey, true, false)); assertEquals(null, cache.getBlock(singleBlocks[1].cacheKey, true, false)); assertEquals(null, cache.getBlock(multiBlocks[0].cacheKey, true, false)); assertEquals(null, cache.getBlock(multiBlocks[1].cacheKey, true, false)); // Let's keep "scanning" by adding single blocks. From here on we only // expect evictions from the single bucket. // Every time we reach 10 total blocks (every 4 inserts) we get 4 single // blocks evicted. Inserting 13 blocks should yield 3 more evictions and // 12 more evicted. for(int i=5;i<18;i++) { cache.cacheBlock(singleBlocks[i].cacheKey, singleBlocks[i]); } // 4 total evictions, 16 total evicted assertEquals(4, cache.getEvictionCount()); assertEquals(16, cache.getEvictedCount()); // Should now have 7 total blocks assertEquals(7, cache.size()); } // test setMaxSize @Test public void testResizeBlockCache() throws Exception { long maxSize = 300000; long blockSize = calculateBlockSize(maxSize, 31); LruBlockCache cache = new LruBlockCache(maxSize, blockSize, false, (int)Math.ceil(1.2*maxSize/blockSize), LruBlockCache.DEFAULT_LOAD_FACTOR, LruBlockCache.DEFAULT_CONCURRENCY_LEVEL, 0.98f, // min 0.99f, // acceptable 0.33f, // single 0.33f, // multi 0.34f);// memory CachedItem [] singleBlocks = generateFixedBlocks(10, blockSize, "single"); CachedItem [] multiBlocks = generateFixedBlocks(10, blockSize, "multi"); CachedItem [] memoryBlocks = generateFixedBlocks(10, blockSize, "memory"); // Add all blocks from all priorities for(int i=0;i<10;i++) { // Just add single blocks cache.cacheBlock(singleBlocks[i].cacheKey, singleBlocks[i]); // Add and get multi blocks cache.cacheBlock(multiBlocks[i].cacheKey, multiBlocks[i]); cache.getBlock(multiBlocks[i].cacheKey, true, false); // Add memory blocks as such cache.cacheBlock(memoryBlocks[i].cacheKey, memoryBlocks[i], true); } // Do not expect any evictions yet assertEquals(0, cache.getEvictionCount()); // Resize to half capacity plus an extra block (otherwise we evict an extra) cache.setMaxSize((long)(maxSize * 0.5f)); // Should have run a single eviction assertEquals(1, cache.getEvictionCount()); // And we expect 1/2 of the blocks to be evicted assertEquals(15, cache.getEvictedCount()); // And the oldest 5 blocks from each category should be gone for(int i=0;i<5;i++) { assertEquals(null, cache.getBlock(singleBlocks[i].cacheKey, true, false)); assertEquals(null, cache.getBlock(multiBlocks[i].cacheKey, true, false)); assertEquals(null, cache.getBlock(memoryBlocks[i].cacheKey, true, false)); } // And the newest 5 blocks should still be accessible for(int i=5;i<10;i++) { assertEquals(singleBlocks[i], cache.getBlock(singleBlocks[i].cacheKey, true, false)); assertEquals(multiBlocks[i], cache.getBlock(multiBlocks[i].cacheKey, true, false)); assertEquals(memoryBlocks[i], cache.getBlock(memoryBlocks[i].cacheKey, true, false)); } } // test metricsPastNPeriods @Test public void testPastNPeriodsMetrics() throws Exception { double delta = 0.01; // 3 total periods CacheStats stats = new CacheStats(3); // No accesses, should be 0 stats.rollMetricsPeriod(); assertEquals(0.0, stats.getHitRatioPastNPeriods(), delta); assertEquals(0.0, stats.getHitCachingRatioPastNPeriods(), delta); // period 1, 1 hit caching, 1 hit non-caching, 2 miss non-caching // should be (2/4)=0.5 and (1/1)=1 stats.hit(false); stats.hit(true); stats.miss(false); stats.miss(false); stats.rollMetricsPeriod(); assertEquals(0.5, stats.getHitRatioPastNPeriods(), delta); assertEquals(1.0, stats.getHitCachingRatioPastNPeriods(), delta); // period 2, 1 miss caching, 3 miss non-caching // should be (2/8)=0.25 and (1/2)=0.5 stats.miss(true); stats.miss(false); stats.miss(false); stats.miss(false); stats.rollMetricsPeriod(); assertEquals(0.25, stats.getHitRatioPastNPeriods(), delta); assertEquals(0.5, stats.getHitCachingRatioPastNPeriods(), delta); // period 3, 2 hits of each type // should be (6/12)=0.5 and (3/4)=0.75 stats.hit(false); stats.hit(true); stats.hit(false); stats.hit(true); stats.rollMetricsPeriod(); assertEquals(0.5, stats.getHitRatioPastNPeriods(), delta); assertEquals(0.75, stats.getHitCachingRatioPastNPeriods(), delta); // period 4, evict period 1, two caching misses // should be (4/10)=0.4 and (2/5)=0.4 stats.miss(true); stats.miss(true); stats.rollMetricsPeriod(); assertEquals(0.4, stats.getHitRatioPastNPeriods(), delta); assertEquals(0.4, stats.getHitCachingRatioPastNPeriods(), delta); // period 5, evict period 2, 2 caching misses, 2 non-caching hit // should be (6/10)=0.6 and (2/6)=1/3 stats.miss(true); stats.miss(true); stats.hit(false); stats.hit(false); stats.rollMetricsPeriod(); assertEquals(0.6, stats.getHitRatioPastNPeriods(), delta); assertEquals((double)1/3, stats.getHitCachingRatioPastNPeriods(), delta); // period 6, evict period 3 // should be (2/6)=1/3 and (0/4)=0 stats.rollMetricsPeriod(); assertEquals((double)1/3, stats.getHitRatioPastNPeriods(), delta); assertEquals(0.0, stats.getHitCachingRatioPastNPeriods(), delta); // period 7, evict period 4 // should be (2/4)=0.5 and (0/2)=0 stats.rollMetricsPeriod(); assertEquals(0.5, stats.getHitRatioPastNPeriods(), delta); assertEquals(0.0, stats.getHitCachingRatioPastNPeriods(), delta); // period 8, evict period 5 // should be 0 and 0 stats.rollMetricsPeriod(); assertEquals(0.0, stats.getHitRatioPastNPeriods(), delta); assertEquals(0.0, stats.getHitCachingRatioPastNPeriods(), delta); // period 9, one of each // should be (2/4)=0.5 and (1/2)=0.5 stats.miss(true); stats.miss(false); stats.hit(true); stats.hit(false); stats.rollMetricsPeriod(); assertEquals(0.5, stats.getHitRatioPastNPeriods(), delta); assertEquals(0.5, stats.getHitCachingRatioPastNPeriods(), delta); } private CachedItem [] generateFixedBlocks(int numBlocks, int size, String pfx) { CachedItem [] blocks = new CachedItem[numBlocks]; for(int i=0;i<numBlocks;i++) { blocks[i] = new CachedItem(pfx + i, size); } return blocks; } private CachedItem [] generateFixedBlocks(int numBlocks, long size, String pfx) { return generateFixedBlocks(numBlocks, (int)size, pfx); } private CachedItem [] generateRandomBlocks(int numBlocks, long maxSize) { CachedItem [] blocks = new CachedItem[numBlocks]; Random r = new Random(); for(int i=0;i<numBlocks;i++) { blocks[i] = new CachedItem("block" + i, r.nextInt((int)maxSize)+1); } return blocks; } private long calculateBlockSize(long maxSize, int numBlocks) { long roughBlockSize = maxSize / numBlocks; int numEntries = (int)Math.ceil((1.2)*maxSize/roughBlockSize); long totalOverhead = LruBlockCache.CACHE_FIXED_OVERHEAD + ClassSize.CONCURRENT_HASHMAP + (numEntries * ClassSize.CONCURRENT_HASHMAP_ENTRY) + (LruBlockCache.DEFAULT_CONCURRENCY_LEVEL * ClassSize.CONCURRENT_HASHMAP_SEGMENT); long negateBlockSize = (long)(totalOverhead/numEntries); negateBlockSize += CachedBlock.PER_BLOCK_OVERHEAD; return ClassSize.align((long)Math.floor((roughBlockSize - negateBlockSize)*0.99f)); } private long calculateBlockSizeDefault(long maxSize, int numBlocks) { long roughBlockSize = maxSize / numBlocks; int numEntries = (int)Math.ceil((1.2)*maxSize/roughBlockSize); long totalOverhead = LruBlockCache.CACHE_FIXED_OVERHEAD + ClassSize.CONCURRENT_HASHMAP + (numEntries * ClassSize.CONCURRENT_HASHMAP_ENTRY) + (LruBlockCache.DEFAULT_CONCURRENCY_LEVEL * ClassSize.CONCURRENT_HASHMAP_SEGMENT); long negateBlockSize = totalOverhead / numEntries; negateBlockSize += CachedBlock.PER_BLOCK_OVERHEAD; return ClassSize.align((long)Math.floor((roughBlockSize - negateBlockSize)* LruBlockCache.DEFAULT_ACCEPTABLE_FACTOR)); } private static class CachedItem implements Cacheable { BlockCacheKey cacheKey; int size; CachedItem(String blockName, int size) { this.cacheKey = new BlockCacheKey(blockName, 0); this.size = size; } /** The size of this item reported to the block cache layer */ @Override public long heapSize() { return ClassSize.align(size); } /** Size of the cache block holding this item. Used for verification. */ public long cacheBlockHeapSize() { return CachedBlock.PER_BLOCK_OVERHEAD + ClassSize.align(cacheKey.heapSize()) + ClassSize.align(size); } @Override public int getSerializedLength() { return 0; } @Override public CacheableDeserializer<Cacheable> getDeserializer() { return null; } @Override public void serialize(ByteBuffer destination) { } } }