/** * Copyright 2009 The Apache Software Foundation * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.hbase.io.hfile; import java.lang.ref.WeakReference; import java.nio.ByteBuffer; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.concurrent.atomic.AtomicLong; import java.util.concurrent.locks.ReentrantLock; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.hbase.io.HeapSize; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.hbase.util.ClassSize; import org.apache.hadoop.util.StringUtils; import com.google.common.util.concurrent.ThreadFactoryBuilder; /** * A block cache implementation that is memory-aware using {@link HeapSize}, * memory-bound using an LRU eviction algorithm, and concurrent: backed by a * {@link ConcurrentHashMap} and with a non-blocking eviction thread giving * constant-time {@link #cacheBlock} and {@link #getBlock} operations.<p> * * Contains three levels of block priority to allow for * scan-resistance and in-memory families. A block is added with an inMemory * flag if necessary, otherwise a block becomes a single access priority. Once * a blocked is accessed again, it changes to multiple access. This is used * to prevent scans from thrashing the cache, adding a least-frequently-used * element to the eviction algorithm.<p> * * Each priority is given its own chunk of the total cache to ensure * fairness during eviction. Each priority will retain close to its maximum * size, however, if any priority is not using its entire chunk the others * are able to grow beyond their chunk size.<p> * * Instantiated at a minimum with the total size and average block size. * All sizes are in bytes. The block size is not especially important as this * cache is fully dynamic in its sizing of blocks. It is only used for * pre-allocating data structures and in initial heap estimation of the map.<p> * * The detailed constructor defines the sizes for the three priorities (they * should total to the maximum size defined). It also sets the levels that * trigger and control the eviction thread.<p> * * The acceptable size is the cache size level which triggers the eviction * process to start. It evicts enough blocks to get the size below the * minimum size specified.<p> * * Eviction happens in a separate thread and involves a single full-scan * of the map. It determines how many bytes must be freed to reach the minimum * size, and then while scanning determines the fewest least-recently-used * blocks necessary from each of the three priorities (would be 3 times bytes * to free). It then uses the priority chunk sizes to evict fairly according * to the relative sizes and usage. */ public class LruBlockCache implements BlockCache, HeapSize { static final Log LOG = LogFactory.getLog(LruBlockCache.class); /** Default Configuration Parameters*/ /** Backing Concurrent Map Configuration */ static final float DEFAULT_LOAD_FACTOR = 0.75f; static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** Eviction thresholds */ static final float DEFAULT_MIN_FACTOR = 0.75f; static final float DEFAULT_ACCEPTABLE_FACTOR = 0.85f; /** Priority buckets */ static final float DEFAULT_SINGLE_FACTOR = 0.25f; static final float DEFAULT_MULTI_FACTOR = 0.50f; static final float DEFAULT_MEMORY_FACTOR = 0.25f; /** Statistics thread */ static final int statThreadPeriod = 60 * 5; /** Concurrent map (the cache) */ private final ConcurrentHashMap<String,CachedBlock> map; /** Eviction lock (locked when eviction in process) */ private final ReentrantLock evictionLock = new ReentrantLock(true); /** Volatile boolean to track if we are in an eviction process or not */ private volatile boolean evictionInProgress = false; /** Eviction thread */ private final EvictionThread evictionThread; /** Statistics thread schedule pool (for heavy debugging, could remove) */ private final ScheduledExecutorService scheduleThreadPool = Executors.newScheduledThreadPool(1, new ThreadFactoryBuilder() .setNameFormat("LRU Statistics #%d") .build()); /** Current size of cache */ private final AtomicLong size; /** Current number of cached elements */ private final AtomicLong elements; /** Cache access count (sequential ID) */ private final AtomicLong count; /** Cache statistics */ private final CacheStats stats; /** Maximum allowable size of cache (block put if size > max, evict) */ private long maxSize; /** Approximate block size */ private long blockSize; /** Acceptable size of cache (no evictions if size < acceptable) */ private float acceptableFactor; /** Minimum threshold of cache (when evicting, evict until size < min) */ private float minFactor; /** Single access bucket size */ private float singleFactor; /** Multiple access bucket size */ private float multiFactor; /** In-memory bucket size */ private float memoryFactor; /** Overhead of the structure itself */ private long overhead; /** * Default constructor. Specify maximum size and expected average block * size (approximation is fine). * * <p>All other factors will be calculated based on defaults specified in * this class. * @param maxSize maximum size of cache, in bytes * @param blockSize approximate size of each block, in bytes */ public LruBlockCache(long maxSize, long blockSize) { this(maxSize, blockSize, true); } /** * Constructor used for testing. Allows disabling of the eviction thread. */ public LruBlockCache(long maxSize, long blockSize, boolean evictionThread) { this(maxSize, blockSize, evictionThread, (int)Math.ceil(1.2*maxSize/blockSize), DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, DEFAULT_MIN_FACTOR, DEFAULT_ACCEPTABLE_FACTOR, DEFAULT_SINGLE_FACTOR, DEFAULT_MULTI_FACTOR, DEFAULT_MEMORY_FACTOR); } /** * Configurable constructor. Use this constructor if not using defaults. * @param maxSize maximum size of this cache, in bytes * @param blockSize expected average size of blocks, in bytes * @param evictionThread whether to run evictions in a bg thread or not * @param mapInitialSize initial size of backing ConcurrentHashMap * @param mapLoadFactor initial load factor of backing ConcurrentHashMap * @param mapConcurrencyLevel initial concurrency factor for backing CHM * @param minFactor percentage of total size that eviction will evict until * @param acceptableFactor percentage of total size that triggers eviction * @param singleFactor percentage of total size for single-access blocks * @param multiFactor percentage of total size for multiple-access blocks * @param memoryFactor percentage of total size for in-memory blocks */ public LruBlockCache(long maxSize, long blockSize, boolean evictionThread, int mapInitialSize, float mapLoadFactor, int mapConcurrencyLevel, float minFactor, float acceptableFactor, float singleFactor, float multiFactor, float memoryFactor) { if(singleFactor + multiFactor + memoryFactor != 1) { throw new IllegalArgumentException("Single, multi, and memory factors " + " should total 1.0"); } if(minFactor >= acceptableFactor) { throw new IllegalArgumentException("minFactor must be smaller than acceptableFactor"); } if(minFactor >= 1.0f || acceptableFactor >= 1.0f) { throw new IllegalArgumentException("all factors must be < 1"); } this.maxSize = maxSize; this.blockSize = blockSize; map = new ConcurrentHashMap<String,CachedBlock>(mapInitialSize, mapLoadFactor, mapConcurrencyLevel); this.minFactor = minFactor; this.acceptableFactor = acceptableFactor; this.singleFactor = singleFactor; this.multiFactor = multiFactor; this.memoryFactor = memoryFactor; this.stats = new CacheStats(); this.count = new AtomicLong(0); this.elements = new AtomicLong(0); this.overhead = calculateOverhead(maxSize, blockSize, mapConcurrencyLevel); this.size = new AtomicLong(this.overhead); if(evictionThread) { this.evictionThread = new EvictionThread(this); this.evictionThread.start(); // FindBugs SC_START_IN_CTOR } else { this.evictionThread = null; } this.scheduleThreadPool.scheduleAtFixedRate(new StatisticsThread(this), statThreadPeriod, statThreadPeriod, TimeUnit.SECONDS); } public void setMaxSize(long maxSize) { this.maxSize = maxSize; if(this.size.get() > acceptableSize() && !evictionInProgress) { runEviction(); } } // BlockCache implementation /** * Cache the block with the specified name and buffer. * <p> * It is assumed this will NEVER be called on an already cached block. If * that is done, it is assumed that you are reinserting the same exact * block due to a race condition and will update the buffer but not modify * the size of the cache. * @param blockName block name * @param buf block buffer * @param inMemory if block is in-memory */ public void cacheBlock(String blockName, ByteBuffer buf, boolean inMemory) { CachedBlock cb = map.get(blockName); if(cb != null) { throw new RuntimeException("Cached an already cached block"); } cb = new CachedBlock(blockName, buf, count.incrementAndGet(), inMemory); long newSize = size.addAndGet(cb.heapSize()); map.put(blockName, cb); elements.incrementAndGet(); if(newSize > acceptableSize() && !evictionInProgress) { runEviction(); } } /** * Cache the block with the specified name and buffer. * <p> * It is assumed this will NEVER be called on an already cached block. If * that is done, it is assumed that you are reinserting the same exact * block due to a race condition and will update the buffer but not modify * the size of the cache. * @param blockName block name * @param buf block buffer */ public void cacheBlock(String blockName, ByteBuffer buf) { cacheBlock(blockName, buf, false); } /** * Get the buffer of the block with the specified name. * @param blockName block name * @return buffer of specified block name, or null if not in cache */ public ByteBuffer getBlock(String blockName, boolean caching) { CachedBlock cb = map.get(blockName); if(cb == null) { stats.miss(caching); return null; } stats.hit(caching); cb.access(count.incrementAndGet()); return cb.getBuffer(); } protected long evictBlock(CachedBlock block) { map.remove(block.getName()); size.addAndGet(-1 * block.heapSize()); elements.decrementAndGet(); stats.evicted(); return block.heapSize(); } /** * Multi-threaded call to run the eviction process. */ private void runEviction() { if(evictionThread == null) { evict(); } else { evictionThread.evict(); } } /** * Eviction method. */ void evict() { // Ensure only one eviction at a time if(!evictionLock.tryLock()) return; try { evictionInProgress = true; long currentSize = this.size.get(); long bytesToFree = currentSize - minSize(); if (LOG.isDebugEnabled()) { LOG.debug("Block cache LRU eviction started; Attempting to free " + StringUtils.byteDesc(bytesToFree) + " of total=" + StringUtils.byteDesc(currentSize)); } if(bytesToFree <= 0) return; // Instantiate priority buckets BlockBucket bucketSingle = new BlockBucket(bytesToFree, blockSize, singleSize()); BlockBucket bucketMulti = new BlockBucket(bytesToFree, blockSize, multiSize()); BlockBucket bucketMemory = new BlockBucket(bytesToFree, blockSize, memorySize()); // Scan entire map putting into appropriate buckets for(CachedBlock cachedBlock : map.values()) { switch(cachedBlock.getPriority()) { case SINGLE: { bucketSingle.add(cachedBlock); break; } case MULTI: { bucketMulti.add(cachedBlock); break; } case MEMORY: { bucketMemory.add(cachedBlock); break; } } } PriorityQueue<BlockBucket> bucketQueue = new PriorityQueue<BlockBucket>(3); bucketQueue.add(bucketSingle); bucketQueue.add(bucketMulti); bucketQueue.add(bucketMemory); int remainingBuckets = 3; long bytesFreed = 0; BlockBucket bucket; while((bucket = bucketQueue.poll()) != null) { long overflow = bucket.overflow(); if(overflow > 0) { long bucketBytesToFree = Math.min(overflow, (bytesToFree - bytesFreed) / remainingBuckets); bytesFreed += bucket.free(bucketBytesToFree); } remainingBuckets--; } if (LOG.isDebugEnabled()) { long single = bucketSingle.totalSize(); long multi = bucketMulti.totalSize(); long memory = bucketMemory.totalSize(); LOG.debug("Block cache LRU eviction completed; " + "freed=" + StringUtils.byteDesc(bytesFreed) + ", " + "total=" + StringUtils.byteDesc(this.size.get()) + ", " + "single=" + StringUtils.byteDesc(single) + ", " + "multi=" + StringUtils.byteDesc(multi) + ", " + "memory=" + StringUtils.byteDesc(memory)); } } finally { stats.evict(); evictionInProgress = false; evictionLock.unlock(); } } /** * Used to group blocks into priority buckets. There will be a BlockBucket * for each priority (single, multi, memory). Once bucketed, the eviction * algorithm takes the appropriate number of elements out of each according * to configuration parameters and their relatives sizes. */ private class BlockBucket implements Comparable<BlockBucket> { private CachedBlockQueue queue; private long totalSize = 0; private long bucketSize; public BlockBucket(long bytesToFree, long blockSize, long bucketSize) { this.bucketSize = bucketSize; queue = new CachedBlockQueue(bytesToFree, blockSize); totalSize = 0; } public void add(CachedBlock block) { totalSize += block.heapSize(); queue.add(block); } public long free(long toFree) { LinkedList<CachedBlock> blocks = queue.get(); long freedBytes = 0; for(CachedBlock cb: blocks) { freedBytes += evictBlock(cb); if(freedBytes >= toFree) { return freedBytes; } } return freedBytes; } public long overflow() { return totalSize - bucketSize; } public long totalSize() { return totalSize; } public int compareTo(BlockBucket that) { if(this.overflow() == that.overflow()) return 0; return this.overflow() > that.overflow() ? 1 : -1; } } /** * Get the maximum size of this cache. * @return max size in bytes */ public long getMaxSize() { return this.maxSize; } /** * Get the current size of this cache. * @return current size in bytes */ public long getCurrentSize() { return this.size.get(); } /** * Get the current size of this cache. * @return current size in bytes */ public long getFreeSize() { return getMaxSize() - getCurrentSize(); } /** * Get the size of this cache (number of cached blocks) * @return number of cached blocks */ public long size() { return this.elements.get(); } /** * Get the number of eviction runs that have occurred */ public long getEvictionCount() { return this.stats.getEvictionCount(); } /** * Get the number of blocks that have been evicted during the lifetime * of this cache. */ public long getEvictedCount() { return this.stats.getEvictedCount(); } /* * Eviction thread. Sits in waiting state until an eviction is triggered * when the cache size grows above the acceptable level.<p> * * Thread is triggered into action by {@link LruBlockCache#runEviction()} */ private static class EvictionThread extends Thread { private WeakReference<LruBlockCache> cache; public EvictionThread(LruBlockCache cache) { super("LruBlockCache.EvictionThread"); setDaemon(true); this.cache = new WeakReference<LruBlockCache>(cache); } @Override public void run() { while(true) { synchronized(this) { try { this.wait(); } catch(InterruptedException e) {} } LruBlockCache cache = this.cache.get(); if(cache == null) break; cache.evict(); } } public void evict() { synchronized(this) { this.notify(); // FindBugs NN_NAKED_NOTIFY } } } /* * Statistics thread. Periodically prints the cache statistics to the log. */ static class StatisticsThread extends Thread { LruBlockCache lru; public StatisticsThread(LruBlockCache lru) { super("LruBlockCache.StatisticsThread"); setDaemon(true); this.lru = lru; } @Override public void run() { lru.logStats(); } } public void logStats() { if (!LOG.isDebugEnabled()) return; // Log size long totalSize = heapSize(); long freeSize = maxSize - totalSize; LruBlockCache.LOG.debug("LRU Stats: " + "total=" + StringUtils.byteDesc(totalSize) + ", " + "free=" + StringUtils.byteDesc(freeSize) + ", " + "max=" + StringUtils.byteDesc(this.maxSize) + ", " + "blocks=" + size() +", " + "accesses=" + stats.getRequestCount() + ", " + "hits=" + stats.getHitCount() + ", " + "hitRatio=" + StringUtils.formatPercent(stats.getHitRatio(), 2) + "%, "+ "cachingAccesses=" + stats.getRequestCachingCount() + ", " + "cachingHits=" + stats.getHitCachingCount() + ", " + "cachingHitsRatio=" + StringUtils.formatPercent(stats.getHitCachingRatio(), 2) + "%, " + "evictions=" + stats.getEvictionCount() + ", " + "evicted=" + stats.getEvictedCount() + ", " + "evictedPerRun=" + stats.evictedPerEviction()); } /** * Get counter statistics for this cache. * * <p>Includes: total accesses, hits, misses, evicted blocks, and runs * of the eviction processes. */ public CacheStats getStats() { return this.stats; } public static class CacheStats { /** The number of getBlock requests that were cache hits */ private final AtomicLong hitCount = new AtomicLong(0); /** * The number of getBlock requests that were cache hits, but only from * requests that were set to use the block cache. This is because all reads * attempt to read from the block cache even if they will not put new blocks * into the block cache. See HBASE-2253 for more information. */ private final AtomicLong hitCachingCount = new AtomicLong(0); /** The number of getBlock requests that were cache misses */ private final AtomicLong missCount = new AtomicLong(0); /** * The number of getBlock requests that were cache misses, but only from * requests that were set to use the block cache. */ private final AtomicLong missCachingCount = new AtomicLong(0); /** The number of times an eviction has occurred */ private final AtomicLong evictionCount = new AtomicLong(0); /** The total number of blocks that have been evicted */ private final AtomicLong evictedCount = new AtomicLong(0); public void miss(boolean caching) { missCount.incrementAndGet(); if (caching) missCachingCount.incrementAndGet(); } public void hit(boolean caching) { hitCount.incrementAndGet(); if (caching) hitCachingCount.incrementAndGet(); } public void evict() { evictionCount.incrementAndGet(); } public void evicted() { evictedCount.incrementAndGet(); } public long getRequestCount() { return getHitCount() + getMissCount(); } public long getRequestCachingCount() { return getHitCachingCount() + getMissCachingCount(); } public long getMissCount() { return missCount.get(); } public long getMissCachingCount() { return missCachingCount.get(); } public long getHitCount() { return hitCachingCount.get(); } public long getHitCachingCount() { return hitCachingCount.get(); } public long getEvictionCount() { return evictionCount.get(); } public long getEvictedCount() { return evictedCount.get(); } public double getHitRatio() { return ((float)getHitCount()/(float)getRequestCount()); } public double getHitCachingRatio() { return ((float)getHitCachingCount()/(float)getRequestCachingCount()); } public double getMissRatio() { return ((float)getMissCount()/(float)getRequestCount()); } public double getMissCachingRatio() { return ((float)getMissCachingCount()/(float)getRequestCachingCount()); } public double evictedPerEviction() { return ((float)getEvictedCount()/(float)getEvictionCount()); } } public final static long CACHE_FIXED_OVERHEAD = ClassSize.align( (3 * Bytes.SIZEOF_LONG) + (8 * ClassSize.REFERENCE) + (5 * Bytes.SIZEOF_FLOAT) + Bytes.SIZEOF_BOOLEAN + ClassSize.OBJECT); // HeapSize implementation public long heapSize() { return getCurrentSize(); } public static long calculateOverhead(long maxSize, long blockSize, int concurrency){ // FindBugs ICAST_INTEGER_MULTIPLY_CAST_TO_LONG return CACHE_FIXED_OVERHEAD + ClassSize.CONCURRENT_HASHMAP + ((long)Math.ceil(maxSize*1.2/blockSize) * ClassSize.CONCURRENT_HASHMAP_ENTRY) + (concurrency * ClassSize.CONCURRENT_HASHMAP_SEGMENT); } // Simple calculators of sizes given factors and maxSize private long acceptableSize() { return (long)Math.floor(this.maxSize * this.acceptableFactor); } private long minSize() { return (long)Math.floor(this.maxSize * this.minFactor); } private long singleSize() { return (long)Math.floor(this.maxSize * this.singleFactor * this.minFactor); } private long multiSize() { return (long)Math.floor(this.maxSize * this.multiFactor * this.minFactor); } private long memorySize() { return (long)Math.floor(this.maxSize * this.memoryFactor * this.minFactor); } public void shutdown() { this.scheduleThreadPool.shutdown(); } }