/* * Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.graalvm.compiler.nodes; import static org.graalvm.compiler.nodeinfo.InputType.Condition; import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_0; import static org.graalvm.compiler.nodeinfo.NodeSize.SIZE_0; import org.graalvm.compiler.graph.IterableNodeType; import org.graalvm.compiler.graph.NodeClass; import org.graalvm.compiler.graph.spi.Canonicalizable; import org.graalvm.compiler.graph.spi.CanonicalizerTool; import org.graalvm.compiler.nodeinfo.NodeInfo; @NodeInfo(cycles = CYCLES_0, size = SIZE_0) public final class ShortCircuitOrNode extends LogicNode implements IterableNodeType, Canonicalizable.Binary<LogicNode> { public static final NodeClass<ShortCircuitOrNode> TYPE = NodeClass.create(ShortCircuitOrNode.class); @Input(Condition) LogicNode x; @Input(Condition) LogicNode y; protected boolean xNegated; protected boolean yNegated; protected double shortCircuitProbability; public ShortCircuitOrNode(LogicNode x, boolean xNegated, LogicNode y, boolean yNegated, double shortCircuitProbability) { super(TYPE); this.x = x; this.xNegated = xNegated; this.y = y; this.yNegated = yNegated; this.shortCircuitProbability = shortCircuitProbability; } @Override public LogicNode getX() { return x; } @Override public LogicNode getY() { return y; } public boolean isXNegated() { return xNegated; } public boolean isYNegated() { return yNegated; } /** * Gets the probability that the {@link #getY() y} part of this binary node is <b>not</b> * evaluated. This is the probability that this operator will short-circuit its execution. */ public double getShortCircuitProbability() { return shortCircuitProbability; } protected ShortCircuitOrNode canonicalizeNegation(LogicNode forX, LogicNode forY) { LogicNode xCond = forX; boolean xNeg = xNegated; while (xCond instanceof LogicNegationNode) { xCond = ((LogicNegationNode) xCond).getValue(); xNeg = !xNeg; } LogicNode yCond = forY; boolean yNeg = yNegated; while (yCond instanceof LogicNegationNode) { yCond = ((LogicNegationNode) yCond).getValue(); yNeg = !yNeg; } if (xCond != forX || yCond != forY) { return new ShortCircuitOrNode(xCond, xNeg, yCond, yNeg, shortCircuitProbability); } else { return this; } } @Override public LogicNode canonical(CanonicalizerTool tool, LogicNode forX, LogicNode forY) { ShortCircuitOrNode ret = canonicalizeNegation(forX, forY); if (ret != this) { return ret; } if (forX == forY) { // @formatter:off // a || a = a // a || !a = true // !a || a = true // !a || !a = !a // @formatter:on if (isXNegated()) { if (isYNegated()) { // !a || !a = !a return LogicNegationNode.create(forX); } else { // !a || a = true return LogicConstantNode.tautology(); } } else { if (isYNegated()) { // a || !a = true return LogicConstantNode.tautology(); } else { // a || a = a return forX; } } } if (forX instanceof LogicConstantNode) { if (((LogicConstantNode) forX).getValue() ^ isXNegated()) { return LogicConstantNode.tautology(); } else { if (isYNegated()) { return new LogicNegationNode(forY); } else { return forY; } } } if (forY instanceof LogicConstantNode) { if (((LogicConstantNode) forY).getValue() ^ isYNegated()) { return LogicConstantNode.tautology(); } else { if (isXNegated()) { return new LogicNegationNode(forX); } else { return forX; } } } if (forX instanceof ShortCircuitOrNode) { ShortCircuitOrNode inner = (ShortCircuitOrNode) forX; if (forY == inner.getX()) { return optimizeShortCircuit(inner, this.xNegated, this.yNegated, true); } else if (forY == inner.getY()) { return optimizeShortCircuit(inner, this.xNegated, this.yNegated, false); } } else if (forY instanceof ShortCircuitOrNode) { ShortCircuitOrNode inner = (ShortCircuitOrNode) forY; if (inner.getX() == forX) { return optimizeShortCircuit(inner, this.yNegated, this.xNegated, true); } else if (inner.getY() == forX) { return optimizeShortCircuit(inner, this.yNegated, this.xNegated, false); } } return this; } private static LogicNode optimizeShortCircuit(ShortCircuitOrNode inner, boolean innerNegated, boolean matchNegated, boolean matchIsInnerX) { boolean innerMatchNegated; if (matchIsInnerX) { innerMatchNegated = inner.isXNegated(); } else { innerMatchNegated = inner.isYNegated(); } if (!innerNegated) { // The four digit results of the expression used in the 16 subsequent formula comments // correspond to results when using the following truth table for inputs a and b // and testing all 4 possible input combinations: // _ 1234 // a 1100 // b 1010 if (innerMatchNegated == matchNegated) { // ( (!a ||!b) ||!a) => 0111 (!a ||!b) // ( (!a || b) ||!a) => 1011 (!a || b) // ( ( a ||!b) || a) => 1101 ( a ||!b) // ( ( a || b) || a) => 1110 ( a || b) // Only the inner or is relevant, the outer or never adds information. return inner; } else { // ( ( a || b) ||!a) => 1111 (true) // ( (!a ||!b) || a) => 1111 (true) // ( (!a || b) || a) => 1111 (true) // ( ( a ||!b) ||!a) => 1111 (true) // The result of the expression is always true. return LogicConstantNode.tautology(); } } else { if (innerMatchNegated == matchNegated) { // (!(!a ||!b) ||!a) => 1011 (!a || b) // (!(!a || b) ||!a) => 0111 (!a ||!b) // (!( a ||!b) || a) => 1110 ( a || b) // (!( a || b) || a) => 1101 ( a ||!b) boolean newInnerXNegated = inner.isXNegated(); boolean newInnerYNegated = inner.isYNegated(); double newProbability = inner.getShortCircuitProbability(); if (matchIsInnerX) { newInnerYNegated = !newInnerYNegated; } else { newInnerXNegated = !newInnerXNegated; newProbability = 1.0 - newProbability; } // The expression can be transformed into a single or. return new ShortCircuitOrNode(inner.getX(), newInnerXNegated, inner.getY(), newInnerYNegated, newProbability); } else { // (!(!a ||!b) || a) => 1100 (a) // (!(!a || b) || a) => 1100 (a) // (!( a ||!b) ||!a) => 0011 (!a) // (!( a || b) ||!a) => 0011 (!a) LogicNode result = inner.getY(); if (matchIsInnerX) { result = inner.getX(); } // Only the second part of the outer or is relevant. if (matchNegated) { return LogicNegationNode.create(result); } else { return result; } } } } }