package com.darkprograms.speech.util; /************************************************************************* * Compilation: javac FFT.java * Execution: java FFT N * Dependencies: Complex.java * * Compute the FFT and inverse FFT of a length N complex sequence. * Bare bones implementation that runs in O(N log N) time. Our goal * is to optimize the clarity of the code, rather than performance. * * Limitations * ----------- * - assumes N is a power of 2 * * - not the most memory efficient algorithm (because it uses * an object type for representing complex numbers and because * it re-allocates memory for the subarray, instead of doing * in-place or reusing a single temporary array) * *************************************************************************/ /************************************************************************* * @author Skylion implementation * @author Princeton University for the actual algorithm. ************************************************************************/ public class FFT { // compute the FFT of x[], assuming its length is a power of 2 public static Complex[] fft(Complex[] x) { int N = x.length; // base case if (N == 1) return new Complex[] { x[0] }; // radix 2 Cooley-Tukey FFT if (N % 2 != 0) { throw new RuntimeException("N is not a power of 2"); } // fft of even terms Complex[] even = new Complex[N/2]; for (int k = 0; k < N/2; k++) { even[k] = x[2*k]; } Complex[] q = fft(even); // fft of odd terms Complex[] odd = even; // reuse the array for (int k = 0; k < N/2; k++) { odd[k] = x[2*k + 1]; } Complex[] r = fft(odd); // combine Complex[] y = new Complex[N]; for (int k = 0; k < N/2; k++) { double kth = -2 * k * Math.PI / N; Complex wk = new Complex(Math.cos(kth), Math.sin(kth)); y[k] = q[k].plus(wk.times(r[k])); y[k + N/2] = q[k].minus(wk.times(r[k])); } return y; } // compute the inverse FFT of x[], assuming its length is a power of 2 public static Complex[] ifft(Complex[] x) { int N = x.length; Complex[] y = new Complex[N]; // take conjugate for (int i = 0; i < N; i++) { y[i] = x[i].conjugate(); } // compute forward FFT y = fft(y); // take conjugate again for (int i = 0; i < N; i++) { y[i] = y[i].conjugate(); } // divide by N for (int i = 0; i < N; i++) { y[i] = y[i].times(1.0 / N); } return y; } // compute the circular convolution of x and y public static Complex[] cconvolve(Complex[] x, Complex[] y) { // should probably pad x and y with 0s so that they have same length // and are powers of 2 if (x.length != y.length) { throw new RuntimeException("Dimensions don't agree"); } int N = x.length; // compute FFT of each sequence Complex[] a = fft(x); Complex[] b = fft(y); // point-wise multiply Complex[] c = new Complex[N]; for (int i = 0; i < N; i++) { c[i] = a[i].times(b[i]); } // compute inverse FFT return ifft(c); } // compute the linear convolution of x and y public static Complex[] convolve(Complex[] x, Complex[] y) { Complex ZERO = new Complex(0, 0); Complex[] a = new Complex[2*x.length]; for (int i = 0; i < x.length; i++) a[i] = x[i]; for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO; Complex[] b = new Complex[2*y.length]; for (int i = 0; i < y.length; i++) b[i] = y[i]; for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO; return cconvolve(a, b); } }