/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* BFTree.java
* Copyright (C) 2007 Haijian Shi
*
*/
package weka.classifiers.trees;
import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableClassifier;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.matrix.Matrix;
import java.util.Arrays;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
/**
<!-- globalinfo-start -->
* Class for building a best-first decision tree classifier. This class uses binary split for both nominal and numeric attributes. For missing values, the method of 'fractional' instances is used.<br/>
* <br/>
* For more information, see:<br/>
* <br/>
* Haijian Shi (2007). Best-first decision tree learning. Hamilton, NZ.<br/>
* <br/>
* Jerome Friedman, Trevor Hastie, Robert Tibshirani (2000). Additive logistic regression : A statistical view of boosting. Annals of statistics. 28(2):337-407.
* <p/>
<!-- globalinfo-end -->
*
<!-- technical-bibtex-start -->
* BibTeX:
* <pre>
* @mastersthesis{Shi2007,
* address = {Hamilton, NZ},
* author = {Haijian Shi},
* note = {COMP594},
* school = {University of Waikato},
* title = {Best-first decision tree learning},
* year = {2007}
* }
*
* @article{Friedman2000,
* author = {Jerome Friedman and Trevor Hastie and Robert Tibshirani},
* journal = {Annals of statistics},
* number = {2},
* pages = {337-407},
* title = {Additive logistic regression : A statistical view of boosting},
* volume = {28},
* year = {2000},
* ISSN = {0090-5364}
* }
* </pre>
* <p/>
<!-- technical-bibtex-end -->
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -S <num>
* Random number seed.
* (default 1)</pre>
*
* <pre> -D
* If set, classifier is run in debug mode and
* may output additional info to the console</pre>
*
* <pre> -P <UNPRUNED|POSTPRUNED|PREPRUNED>
* The pruning strategy.
* (default: POSTPRUNED)</pre>
*
* <pre> -M <min no>
* The minimal number of instances at the terminal nodes.
* (default 2)</pre>
*
* <pre> -N <num folds>
* The number of folds used in the pruning.
* (default 5)</pre>
*
* <pre> -H
* Don't use heuristic search for nominal attributes in multi-class
* problem (default yes).
* </pre>
*
* <pre> -G
* Don't use Gini index for splitting (default yes),
* if not information is used.</pre>
*
* <pre> -R
* Don't use error rate in internal cross-validation (default yes),
* but root mean squared error.</pre>
*
* <pre> -A
* Use the 1 SE rule to make pruning decision.
* (default no).</pre>
*
* <pre> -C
* Percentage of training data size (0-1]
* (default 1).</pre>
*
<!-- options-end -->
*
* @author Haijian Shi (hs69@cs.waikato.ac.nz)
* @version $Revision: 5987 $
*/
public class BFTree
extends RandomizableClassifier
implements AdditionalMeasureProducer, TechnicalInformationHandler {
/** For serialization. */
private static final long serialVersionUID = -7035607375962528217L;
/** pruning strategy: un-pruned */
public static final int PRUNING_UNPRUNED = 0;
/** pruning strategy: post-pruning */
public static final int PRUNING_POSTPRUNING = 1;
/** pruning strategy: pre-pruning */
public static final int PRUNING_PREPRUNING = 2;
/** pruning strategy */
public static final Tag[] TAGS_PRUNING = {
new Tag(PRUNING_UNPRUNED, "unpruned", "Un-pruned"),
new Tag(PRUNING_POSTPRUNING, "postpruned", "Post-pruning"),
new Tag(PRUNING_PREPRUNING, "prepruned", "Pre-pruning")
};
/** the pruning strategy */
protected int m_PruningStrategy = PRUNING_POSTPRUNING;
/** Successor nodes. */
protected BFTree[] m_Successors;
/** Attribute used for splitting. */
protected Attribute m_Attribute;
/** Split point (for numeric attributes). */
protected double m_SplitValue;
/** Split subset (for nominal attributes). */
protected String m_SplitString;
/** Class value for a node. */
protected double m_ClassValue;
/** Class attribute of a dataset. */
protected Attribute m_ClassAttribute;
/** Minimum number of instances at leaf nodes. */
protected int m_minNumObj = 2;
/** Number of folds for the pruning. */
protected int m_numFoldsPruning = 5;
/** If the ndoe is leaf node. */
protected boolean m_isLeaf;
/** Number of expansions. */
protected static int m_Expansion;
/** Fixed number of expansions (if no pruning method is used, its value is -1. Otherwise,
* its value is gotten from internal cross-validation). */
protected int m_FixedExpansion = -1;
/** If use huristic search for binary split (default true). Note even if its value is true, it is only
* used when the number of values of a nominal attribute is larger than 4. */
protected boolean m_Heuristic = true;
/** If use Gini index as the splitting criterion - default (if not, information is used). */
protected boolean m_UseGini = true;
/** If use error rate in internal cross-validation to fix the number of expansions - default
* (if not, root mean squared error is used). */
protected boolean m_UseErrorRate = true;
/** If use the 1SE rule to make the decision. */
protected boolean m_UseOneSE = false;
/** Class distributions. */
protected double[] m_Distribution;
/** Branch proportions. */
protected double[] m_Props;
/** Sorted indices. */
protected int[][] m_SortedIndices;
/** Sorted weights. */
protected double[][] m_Weights;
/** Distributions of each attribute for two successor nodes. */
protected double[][][] m_Dists;
/** Class probabilities. */
protected double[] m_ClassProbs;
/** Total weights. */
protected double m_TotalWeight;
/** The training data size (0-1). Default 1. */
protected double m_SizePer = 1;
/**
* Returns a string describing classifier
*
* @return a description suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return
"Class for building a best-first decision tree classifier. "
+ "This class uses binary split for both nominal and numeric attributes. "
+ "For missing values, the method of 'fractional' instances is used.\n\n"
+ "For more information, see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
TechnicalInformation additional;
result = new TechnicalInformation(Type.MASTERSTHESIS);
result.setValue(Field.AUTHOR, "Haijian Shi");
result.setValue(Field.YEAR, "2007");
result.setValue(Field.TITLE, "Best-first decision tree learning");
result.setValue(Field.SCHOOL, "University of Waikato");
result.setValue(Field.ADDRESS, "Hamilton, NZ");
result.setValue(Field.NOTE, "COMP594");
additional = result.add(Type.ARTICLE);
additional.setValue(Field.AUTHOR, "Jerome Friedman and Trevor Hastie and Robert Tibshirani");
additional.setValue(Field.YEAR, "2000");
additional.setValue(Field.TITLE, "Additive logistic regression : A statistical view of boosting");
additional.setValue(Field.JOURNAL, "Annals of statistics");
additional.setValue(Field.VOLUME, "28");
additional.setValue(Field.NUMBER, "2");
additional.setValue(Field.PAGES, "337-407");
additional.setValue(Field.ISSN, "0090-5364");
return result;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enable(Capability.MISSING_VALUES);
// class
result.enable(Capability.NOMINAL_CLASS);
return result;
}
/**
* Method for building a BestFirst decision tree classifier.
*
* @param data set of instances serving as training data
* @throws Exception if decision tree cannot be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
getCapabilities().testWithFail(data);
data = new Instances(data);
data.deleteWithMissingClass();
// build an unpruned tree
if (m_PruningStrategy == PRUNING_UNPRUNED) {
// calculate sorted indices, weights and initial class probabilities
int[][] sortedIndices = new int[data.numAttributes()][0];
double[][] weights = new double[data.numAttributes()][0];
double[] classProbs = new double[data.numClasses()];
double totalWeight = computeSortedInfo(data,sortedIndices, weights,classProbs);
// Compute information of the best split for this node (include split attribute,
// split value and gini gain (or information gain)). At the same time, compute
// variables dists, props and totalSubsetWeights.
double[][][] dists = new double[data.numAttributes()][2][data.numClasses()];
double[][] props = new double[data.numAttributes()][2];
double[][] totalSubsetWeights = new double[data.numAttributes()][2];
FastVector nodeInfo = computeSplitInfo(this, data, sortedIndices, weights, dists,
props, totalSubsetWeights, m_Heuristic, m_UseGini);
// add the node (with all split info) into BestFirstElements
FastVector BestFirstElements = new FastVector();
BestFirstElements.addElement(nodeInfo);
// Make the best-first decision tree.
int attIndex = ((Attribute)nodeInfo.elementAt(1)).index();
m_Expansion = 0;
makeTree(BestFirstElements, data, sortedIndices, weights, dists, classProbs,
totalWeight, props[attIndex] ,m_minNumObj, m_Heuristic, m_UseGini, m_FixedExpansion);
return;
}
// the following code is for pre-pruning and post-pruning methods
// Compute train data, test data, sorted indices, sorted weights, total weights,
// class probabilities, class distributions, branch proportions and total subset
// weights for root nodes of each fold for prepruning and postpruning.
int expansion = 0;
Random random = new Random(m_Seed);
Instances cvData = new Instances(data);
cvData.randomize(random);
cvData = new Instances(cvData,0,(int)(cvData.numInstances()*m_SizePer)-1);
cvData.stratify(m_numFoldsPruning);
Instances[] train = new Instances[m_numFoldsPruning];
Instances[] test = new Instances[m_numFoldsPruning];
FastVector[] parallelBFElements = new FastVector [m_numFoldsPruning];
BFTree[] m_roots = new BFTree[m_numFoldsPruning];
int[][][] sortedIndices = new int[m_numFoldsPruning][data.numAttributes()][0];
double[][][] weights = new double[m_numFoldsPruning][data.numAttributes()][0];
double[][] classProbs = new double[m_numFoldsPruning][data.numClasses()];
double[] totalWeight = new double[m_numFoldsPruning];
double[][][][] dists =
new double[m_numFoldsPruning][data.numAttributes()][2][data.numClasses()];
double[][][] props =
new double[m_numFoldsPruning][data.numAttributes()][2];
double[][][] totalSubsetWeights =
new double[m_numFoldsPruning][data.numAttributes()][2];
FastVector[] nodeInfo = new FastVector[m_numFoldsPruning];
for (int i = 0; i < m_numFoldsPruning; i++) {
train[i] = cvData.trainCV(m_numFoldsPruning, i);
test[i] = cvData.testCV(m_numFoldsPruning, i);
parallelBFElements[i] = new FastVector();
m_roots[i] = new BFTree();
// calculate sorted indices, weights, initial class counts and total weights for each training data
totalWeight[i] = computeSortedInfo(train[i],sortedIndices[i], weights[i],
classProbs[i]);
// compute information of the best split for this node (include split attribute,
// split value and gini gain (or information gain)) in this fold
nodeInfo[i] = computeSplitInfo(m_roots[i], train[i], sortedIndices[i],
weights[i], dists[i], props[i], totalSubsetWeights[i], m_Heuristic, m_UseGini);
// compute information for root nodes
int attIndex = ((Attribute)nodeInfo[i].elementAt(1)).index();
m_roots[i].m_SortedIndices = new int[sortedIndices[i].length][0];
m_roots[i].m_Weights = new double[weights[i].length][0];
m_roots[i].m_Dists = new double[dists[i].length][0][0];
m_roots[i].m_ClassProbs = new double[classProbs[i].length];
m_roots[i].m_Distribution = new double[classProbs[i].length];
m_roots[i].m_Props = new double[2];
for (int j=0; j<m_roots[i].m_SortedIndices.length; j++) {
m_roots[i].m_SortedIndices[j] = sortedIndices[i][j];
m_roots[i].m_Weights[j] = weights[i][j];
m_roots[i].m_Dists[j] = dists[i][j];
}
System.arraycopy(classProbs[i], 0, m_roots[i].m_ClassProbs, 0,
classProbs[i].length);
if (Utils.sum(m_roots[i].m_ClassProbs)!=0)
Utils.normalize(m_roots[i].m_ClassProbs);
System.arraycopy(classProbs[i], 0, m_roots[i].m_Distribution, 0,
classProbs[i].length);
System.arraycopy(props[i][attIndex], 0, m_roots[i].m_Props, 0,
props[i][attIndex].length);
m_roots[i].m_TotalWeight = totalWeight[i];
parallelBFElements[i].addElement(nodeInfo[i]);
}
// build a pre-pruned tree
if (m_PruningStrategy == PRUNING_PREPRUNING) {
double previousError = Double.MAX_VALUE;
double currentError = previousError;
double minError = Double.MAX_VALUE;
int minExpansion = 0;
FastVector errorList = new FastVector();
while(true) {
// compute average error
double expansionError = 0;
int count = 0;
for (int i=0; i<m_numFoldsPruning; i++) {
Evaluation eval;
// calculate error rate if only root node
if (expansion==0) {
m_roots[i].m_isLeaf = true;
eval = new Evaluation(test[i]);
eval.evaluateModel(m_roots[i], test[i]);
if (m_UseErrorRate) expansionError += eval.errorRate();
else expansionError += eval.rootMeanSquaredError();
count ++;
}
// make tree - expand one node at a time
else {
if (m_roots[i] == null) continue; // if the tree cannot be expanded, go to next fold
m_roots[i].m_isLeaf = false;
BFTree nodeToSplit = (BFTree)
(((FastVector)(parallelBFElements[i].elementAt(0))).elementAt(0));
if (!m_roots[i].makeTree(parallelBFElements[i], m_roots[i], train[i],
nodeToSplit.m_SortedIndices, nodeToSplit.m_Weights,
nodeToSplit.m_Dists, nodeToSplit.m_ClassProbs,
nodeToSplit.m_TotalWeight, nodeToSplit.m_Props, m_minNumObj,
m_Heuristic, m_UseGini)) {
m_roots[i] = null; // cannot be expanded
continue;
}
eval = new Evaluation(test[i]);
eval.evaluateModel(m_roots[i], test[i]);
if (m_UseErrorRate) expansionError += eval.errorRate();
else expansionError += eval.rootMeanSquaredError();
count ++;
}
}
// no tree can be expanded any more
if (count==0) break;
expansionError /=count;
errorList.addElement(new Double(expansionError));
currentError = expansionError;
if (!m_UseOneSE) {
if (currentError>previousError)
break;
}
else {
if (expansionError < minError) {
minError = expansionError;
minExpansion = expansion;
}
if (currentError>previousError) {
double oneSE = Math.sqrt(minError*(1-minError)/
data.numInstances());
if (currentError > minError + oneSE) {
break;
}
}
}
expansion ++;
previousError = currentError;
}
if (!m_UseOneSE) expansion = expansion - 1;
else {
double oneSE = Math.sqrt(minError*(1-minError)/data.numInstances());
for (int i=0; i<errorList.size(); i++) {
double error = ((Double)(errorList.elementAt(i))).doubleValue();
if (error<=minError + oneSE) { // && counts[i]>=m_numFoldsPruning/2) {
expansion = i;
break;
}
}
}
}
// build a postpruned tree
else {
FastVector[] modelError = new FastVector[m_numFoldsPruning];
// calculate error of each expansion for each fold
for (int i = 0; i < m_numFoldsPruning; i++) {
modelError[i] = new FastVector();
m_roots[i].m_isLeaf = true;
Evaluation eval = new Evaluation(test[i]);
eval.evaluateModel(m_roots[i], test[i]);
double error;
if (m_UseErrorRate) error = eval.errorRate();
else error = eval.rootMeanSquaredError();
modelError[i].addElement(new Double(error));
m_roots[i].m_isLeaf = false;
BFTree nodeToSplit = (BFTree)
(((FastVector)(parallelBFElements[i].elementAt(0))).elementAt(0));
m_roots[i].makeTree(parallelBFElements[i], m_roots[i], train[i], test[i],
modelError[i],nodeToSplit.m_SortedIndices, nodeToSplit.m_Weights,
nodeToSplit.m_Dists, nodeToSplit.m_ClassProbs,
nodeToSplit.m_TotalWeight, nodeToSplit.m_Props, m_minNumObj,
m_Heuristic, m_UseGini, m_UseErrorRate);
m_roots[i] = null;
}
// find the expansion with minimal error rate
double minError = Double.MAX_VALUE;
int maxExpansion = modelError[0].size();
for (int i=1; i<modelError.length; i++) {
if (modelError[i].size()>maxExpansion)
maxExpansion = modelError[i].size();
}
double[] error = new double[maxExpansion];
int[] counts = new int[maxExpansion];
for (int i=0; i<maxExpansion; i++) {
counts[i] = 0;
error[i] = 0;
for (int j=0; j<m_numFoldsPruning; j++) {
if (i<modelError[j].size()) {
error[i] += ((Double)modelError[j].elementAt(i)).doubleValue();
counts[i]++;
}
}
error[i] = error[i]/counts[i]; //average error for each expansion
if (error[i]<minError) {// && counts[i]>=m_numFoldsPruning/2) {
minError = error[i];
expansion = i;
}
}
// the 1 SE rule choosen
if (m_UseOneSE) {
double oneSE = Math.sqrt(minError*(1-minError)/
data.numInstances());
for (int i=0; i<maxExpansion; i++) {
if (error[i]<=minError + oneSE) { // && counts[i]>=m_numFoldsPruning/2) {
expansion = i;
break;
}
}
}
}
// make tree on all data based on the expansion caculated
// from cross-validation
// calculate sorted indices, weights and initial class counts
int[][] prune_sortedIndices = new int[data.numAttributes()][0];
double[][] prune_weights = new double[data.numAttributes()][0];
double[] prune_classProbs = new double[data.numClasses()];
double prune_totalWeight = computeSortedInfo(data, prune_sortedIndices,
prune_weights, prune_classProbs);
// compute information of the best split for this node (include split attribute,
// split value and gini gain)
double[][][] prune_dists = new double[data.numAttributes()][2][data.numClasses()];
double[][] prune_props = new double[data.numAttributes()][2];
double[][] prune_totalSubsetWeights = new double[data.numAttributes()][2];
FastVector prune_nodeInfo = computeSplitInfo(this, data, prune_sortedIndices,
prune_weights, prune_dists, prune_props, prune_totalSubsetWeights, m_Heuristic,m_UseGini);
// add the root node (with its split info) to BestFirstElements
FastVector BestFirstElements = new FastVector();
BestFirstElements.addElement(prune_nodeInfo);
int attIndex = ((Attribute)prune_nodeInfo.elementAt(1)).index();
m_Expansion = 0;
makeTree(BestFirstElements, data, prune_sortedIndices, prune_weights, prune_dists,
prune_classProbs, prune_totalWeight, prune_props[attIndex] ,m_minNumObj,
m_Heuristic, m_UseGini, expansion);
}
/**
* Recursively build a best-first decision tree.
* Method for building a Best-First tree for a given number of expansions.
* preExpasion is -1 means that no expansion is specified (just for a
* tree without any pruning method). Pre-pruning and post-pruning methods also
* use this method to build the final tree on all training data based on the
* expansion calculated from internal cross-validation.
*
* @param BestFirstElements list to store BFTree nodes
* @param data training data
* @param sortedIndices sorted indices of the instances
* @param weights weights of the instances
* @param dists class distributions for each attribute
* @param classProbs class probabilities of this node
* @param totalWeight total weight of this node (note if the node
* can not split, this value is not calculated.)
* @param branchProps proportions of two subbranches
* @param minNumObj minimal number of instances at leaf nodes
* @param useHeuristic if use heuristic search for nominal attributes
* in multi-class problem
* @param useGini if use Gini index as splitting criterion
* @param preExpansion the number of expansions the tree to be expanded
* @throws Exception if something goes wrong
*/
protected void makeTree(FastVector BestFirstElements,Instances data,
int[][] sortedIndices, double[][] weights, double[][][] dists,
double[] classProbs, double totalWeight, double[] branchProps,
int minNumObj, boolean useHeuristic, boolean useGini, int preExpansion)
throws Exception {
if (BestFirstElements.size()==0) return;
///////////////////////////////////////////////////////////////////////
// All information about the node to split (the first BestFirst object in
// BestFirstElements)
FastVector firstElement = (FastVector)BestFirstElements.elementAt(0);
// split attribute
Attribute att = (Attribute)firstElement.elementAt(1);
// info of split value or split string
double splitValue = Double.NaN;
String splitStr = null;
if (att.isNumeric())
splitValue = ((Double)firstElement.elementAt(2)).doubleValue();
else {
splitStr=((String)firstElement.elementAt(2)).toString();
}
// the best gini gain or information gain of this node
double gain = ((Double)firstElement.elementAt(3)).doubleValue();
///////////////////////////////////////////////////////////////////////
if (m_ClassProbs==null) {
m_SortedIndices = new int[sortedIndices.length][0];
m_Weights = new double[weights.length][0];
m_Dists = new double[dists.length][0][0];
m_ClassProbs = new double[classProbs.length];
m_Distribution = new double[classProbs.length];
m_Props = new double[2];
for (int i=0; i<m_SortedIndices.length; i++) {
m_SortedIndices[i] = sortedIndices[i];
m_Weights[i] = weights[i];
m_Dists[i] = dists[i];
}
System.arraycopy(classProbs, 0, m_ClassProbs, 0, classProbs.length);
System.arraycopy(classProbs, 0, m_Distribution, 0, classProbs.length);
System.arraycopy(branchProps, 0, m_Props, 0, m_Props.length);
m_TotalWeight = totalWeight;
if (Utils.sum(m_ClassProbs)!=0) Utils.normalize(m_ClassProbs);
}
// If no enough data or this node can not be split, find next node to split.
if (totalWeight < 2*minNumObj || branchProps[0]==0
|| branchProps[1]==0) {
// remove the first element
BestFirstElements.removeElementAt(0);
makeLeaf(data);
if (BestFirstElements.size()!=0) {
FastVector nextSplitElement = (FastVector)BestFirstElements.elementAt(0);
BFTree nextSplitNode = (BFTree)nextSplitElement.elementAt(0);
nextSplitNode.makeTree(BestFirstElements,data,
nextSplitNode.m_SortedIndices, nextSplitNode.m_Weights,
nextSplitNode.m_Dists,
nextSplitNode.m_ClassProbs, nextSplitNode.m_TotalWeight,
nextSplitNode.m_Props, minNumObj, useHeuristic, useGini, preExpansion);
}
return;
}
// If gini gain or information gain is 0, make all nodes in the BestFirstElements leaf nodes
// because these nodes are sorted descendingly according to gini gain or information gain.
// (namely, gini gain or information gain of all nodes in BestFirstEelements is 0).
if (gain==0 || preExpansion==m_Expansion) {
for (int i=0; i<BestFirstElements.size(); i++) {
FastVector element = (FastVector)BestFirstElements.elementAt(i);
BFTree node = (BFTree)element.elementAt(0);
node.makeLeaf(data);
}
BestFirstElements.removeAllElements();
}
// gain is not 0
else {
// remove the first element
BestFirstElements.removeElementAt(0);
m_Attribute = att;
if (m_Attribute.isNumeric()) m_SplitValue = splitValue;
else m_SplitString = splitStr;
int[][][] subsetIndices = new int[2][data.numAttributes()][0];
double[][][] subsetWeights = new double[2][data.numAttributes()][0];
splitData(subsetIndices, subsetWeights, m_Attribute, m_SplitValue,
m_SplitString, sortedIndices, weights, data);
// If split will generate node(s) which has total weights less than m_minNumObj,
// do not split.
int attIndex = att.index();
if (subsetIndices[0][attIndex].length<minNumObj ||
subsetIndices[1][attIndex].length<minNumObj) {
makeLeaf(data);
}
// split the node
else {
m_isLeaf = false;
m_Attribute = att;
// if expansion is specified (if pruning method used)
if ( (m_PruningStrategy == PRUNING_PREPRUNING)
|| (m_PruningStrategy == PRUNING_POSTPRUNING)
|| (preExpansion != -1))
m_Expansion++;
makeSuccessors(BestFirstElements,data,subsetIndices,subsetWeights,dists,
att,useHeuristic, useGini);
}
// choose next node to split
if (BestFirstElements.size()!=0) {
FastVector nextSplitElement = (FastVector)BestFirstElements.elementAt(0);
BFTree nextSplitNode = (BFTree)nextSplitElement.elementAt(0);
nextSplitNode.makeTree(BestFirstElements,data,
nextSplitNode.m_SortedIndices, nextSplitNode.m_Weights,
nextSplitNode.m_Dists,
nextSplitNode.m_ClassProbs, nextSplitNode.m_TotalWeight,
nextSplitNode.m_Props, minNumObj, useHeuristic, useGini, preExpansion);
}
}
}
/**
* This method is to find the number of expansions based on internal
* cross-validation for just pre-pruning. It expands the first BestFirst
* node in the BestFirstElements if it is expansible, otherwise it looks
* for next exapansible node. If it finds a node is expansibel, expand the
* node, then return true. (note it just expands one node at a time).
*
* @param BestFirstElements list to store BFTree nodes
* @param root root node of tree in each fold
* @param train training data
* @param sortedIndices sorted indices of the instances
* @param weights weights of the instances
* @param dists class distributions for each attribute
* @param classProbs class probabilities of this node
* @param totalWeight total weight of this node (note if the node
* can not split, this value is not calculated.)
* @param branchProps proportions of two subbranches
* @param minNumObj minimal number of instances at leaf nodes
* @param useHeuristic if use heuristic search for nominal attributes
* in multi-class problem
* @param useGini if use Gini index as splitting criterion
* @return true if expand successfully, otherwise return false
* (all nodes in BestFirstElements cannot be
* expanded).
* @throws Exception if something goes wrong
*/
protected boolean makeTree(FastVector BestFirstElements, BFTree root,
Instances train, int[][] sortedIndices, double[][] weights,
double[][][] dists, double[] classProbs, double totalWeight,
double[] branchProps, int minNumObj, boolean useHeuristic, boolean useGini)
throws Exception {
if (BestFirstElements.size()==0) return false;
///////////////////////////////////////////////////////////////////////
// All information about the node to split (first BestFirst object in
// BestFirstElements)
FastVector firstElement = (FastVector)BestFirstElements.elementAt(0);
// node to split
BFTree nodeToSplit = (BFTree)firstElement.elementAt(0);
// split attribute
Attribute att = (Attribute)firstElement.elementAt(1);
// info of split value or split string
double splitValue = Double.NaN;
String splitStr = null;
if (att.isNumeric())
splitValue = ((Double)firstElement.elementAt(2)).doubleValue();
else {
splitStr=((String)firstElement.elementAt(2)).toString();
}
// the best gini gain or information gain of this node
double gain = ((Double)firstElement.elementAt(3)).doubleValue();
///////////////////////////////////////////////////////////////////////
// If no enough data to split for this node or this node can not be split find next node to split.
if (totalWeight < 2*minNumObj || branchProps[0]==0
|| branchProps[1]==0) {
// remove the first element
BestFirstElements.removeElementAt(0);
nodeToSplit.makeLeaf(train);
BFTree nextNode = (BFTree)
((FastVector)BestFirstElements.elementAt(0)).elementAt(0);
return root.makeTree(BestFirstElements, root, train,
nextNode.m_SortedIndices, nextNode.m_Weights, nextNode.m_Dists,
nextNode.m_ClassProbs, nextNode.m_TotalWeight,
nextNode.m_Props, minNumObj, useHeuristic, useGini);
}
// If gini gain or information is 0, make all nodes in the BestFirstElements leaf nodes
// because these node sorted descendingly according to gini gain or information gain.
// (namely, gini gain or information gain of all nodes in BestFirstEelements is 0).
if (gain==0) {
for (int i=0; i<BestFirstElements.size(); i++) {
FastVector element = (FastVector)BestFirstElements.elementAt(i);
BFTree node = (BFTree)element.elementAt(0);
node.makeLeaf(train);
}
BestFirstElements.removeAllElements();
return false;
}
else {
// remove the first element
BestFirstElements.removeElementAt(0);
nodeToSplit.m_Attribute = att;
if (att.isNumeric()) nodeToSplit.m_SplitValue = splitValue;
else nodeToSplit.m_SplitString = splitStr;
int[][][] subsetIndices = new int[2][train.numAttributes()][0];
double[][][] subsetWeights = new double[2][train.numAttributes()][0];
splitData(subsetIndices, subsetWeights, nodeToSplit.m_Attribute,
nodeToSplit.m_SplitValue, nodeToSplit.m_SplitString,
nodeToSplit.m_SortedIndices, nodeToSplit.m_Weights, train);
// if split will generate node(s) which has total weights less than m_minNumObj,
// do not split
int attIndex = att.index();
if (subsetIndices[0][attIndex].length<minNumObj ||
subsetIndices[1][attIndex].length<minNumObj) {
nodeToSplit.makeLeaf(train);
BFTree nextNode = (BFTree)
((FastVector)BestFirstElements.elementAt(0)).elementAt(0);
return root.makeTree(BestFirstElements, root, train,
nextNode.m_SortedIndices, nextNode.m_Weights, nextNode.m_Dists,
nextNode.m_ClassProbs, nextNode.m_TotalWeight,
nextNode.m_Props, minNumObj, useHeuristic, useGini);
}
// split the node
else {
nodeToSplit.m_isLeaf = false;
nodeToSplit.m_Attribute = att;
nodeToSplit.makeSuccessors(BestFirstElements,train,subsetIndices,
subsetWeights,dists, nodeToSplit.m_Attribute,useHeuristic,useGini);
for (int i=0; i<2; i++){
nodeToSplit.m_Successors[i].makeLeaf(train);
}
return true;
}
}
}
/**
* This method is to find the number of expansions based on internal
* cross-validation for just post-pruning. It expands the first BestFirst
* node in the BestFirstElements until no node can be split. When building
* the tree, stroe error for each temporary tree, namely for each expansion.
*
* @param BestFirstElements list to store BFTree nodes
* @param root root node of tree in each fold
* @param train training data in each fold
* @param test test data in each fold
* @param modelError list to store error for each expansion in
* each fold
* @param sortedIndices sorted indices of the instances
* @param weights weights of the instances
* @param dists class distributions for each attribute
* @param classProbs class probabilities of this node
* @param totalWeight total weight of this node (note if the node
* can not split, this value is not calculated.)
* @param branchProps proportions of two subbranches
* @param minNumObj minimal number of instances at leaf nodes
* @param useHeuristic if use heuristic search for nominal attributes
* in multi-class problem
* @param useGini if use Gini index as splitting criterion
* @param useErrorRate if use error rate in internal cross-validation
* @throws Exception if something goes wrong
*/
protected void makeTree(FastVector BestFirstElements, BFTree root,
Instances train, Instances test, FastVector modelError, int[][] sortedIndices,
double[][] weights, double[][][] dists, double[] classProbs, double totalWeight,
double[] branchProps, int minNumObj, boolean useHeuristic, boolean useGini, boolean useErrorRate)
throws Exception {
if (BestFirstElements.size()==0) return;
///////////////////////////////////////////////////////////////////////
// All information about the node to split (first BestFirst object in
// BestFirstElements)
FastVector firstElement = (FastVector)BestFirstElements.elementAt(0);
// node to split
//BFTree nodeToSplit = (BFTree)firstElement.elementAt(0);
// split attribute
Attribute att = (Attribute)firstElement.elementAt(1);
// info of split value or split string
double splitValue = Double.NaN;
String splitStr = null;
if (att.isNumeric())
splitValue = ((Double)firstElement.elementAt(2)).doubleValue();
else {
splitStr=((String)firstElement.elementAt(2)).toString();
}
// the best gini gain or information of this node
double gain = ((Double)firstElement.elementAt(3)).doubleValue();
///////////////////////////////////////////////////////////////////////
if (totalWeight < 2*minNumObj || branchProps[0]==0
|| branchProps[1]==0) {
// remove the first element
BestFirstElements.removeElementAt(0);
makeLeaf(train);
if (BestFirstElements.size() == 0) {
return;
}
BFTree nextSplitNode = (BFTree)
((FastVector)BestFirstElements.elementAt(0)).elementAt(0);
nextSplitNode.makeTree(BestFirstElements, root, train, test, modelError,
nextSplitNode.m_SortedIndices, nextSplitNode.m_Weights,
nextSplitNode.m_Dists, nextSplitNode.m_ClassProbs,
nextSplitNode.m_TotalWeight, nextSplitNode.m_Props, minNumObj,
useHeuristic, useGini, useErrorRate);
return;
}
// If gini gain or information gain is 0, make all nodes in the BestFirstElements leaf nodes
// because these node sorted descendingly according to gini gain or information gain.
// (namely, gini gain or information gain of all nodes in BestFirstEelements is 0).
if (gain==0) {
for (int i=0; i<BestFirstElements.size(); i++) {
FastVector element = (FastVector)BestFirstElements.elementAt(i);
BFTree node = (BFTree)element.elementAt(0);
node.makeLeaf(train);
}
BestFirstElements.removeAllElements();
}
// gini gain or information gain is not 0
else {
// remove the first element
BestFirstElements.removeElementAt(0);
m_Attribute = att;
if (att.isNumeric()) m_SplitValue = splitValue;
else m_SplitString = splitStr;
int[][][] subsetIndices = new int[2][train.numAttributes()][0];
double[][][] subsetWeights = new double[2][train.numAttributes()][0];
splitData(subsetIndices, subsetWeights, m_Attribute,
m_SplitValue, m_SplitString,
sortedIndices, weights, train);
// if split will generate node(s) which has total weights less than m_minNumObj,
// do not split
int attIndex = att.index();
if (subsetIndices[0][attIndex].length<minNumObj ||
subsetIndices[1][attIndex].length<minNumObj) {
makeLeaf(train);
}
// split the node and cauculate error rate of this temporary tree
else {
m_isLeaf = false;
m_Attribute = att;
makeSuccessors(BestFirstElements,train,subsetIndices,
subsetWeights,dists, m_Attribute, useHeuristic, useGini);
for (int i=0; i<2; i++){
m_Successors[i].makeLeaf(train);
}
Evaluation eval = new Evaluation(test);
eval.evaluateModel(root, test);
double error;
if (useErrorRate) error = eval.errorRate();
else error = eval.rootMeanSquaredError();
modelError.addElement(new Double(error));
}
if (BestFirstElements.size()!=0) {
FastVector nextSplitElement = (FastVector)BestFirstElements.elementAt(0);
BFTree nextSplitNode = (BFTree)nextSplitElement.elementAt(0);
nextSplitNode.makeTree(BestFirstElements, root, train, test, modelError,
nextSplitNode.m_SortedIndices, nextSplitNode.m_Weights,
nextSplitNode.m_Dists, nextSplitNode.m_ClassProbs,
nextSplitNode.m_TotalWeight, nextSplitNode.m_Props, minNumObj,
useHeuristic, useGini,useErrorRate);
}
}
}
/**
* Generate successor nodes for a node and put them into BestFirstElements
* according to gini gain or information gain in a descending order.
*
* @param BestFirstElements list to store BestFirst nodes
* @param data training instance
* @param subsetSortedIndices sorted indices of instances of successor nodes
* @param subsetWeights weights of instances of successor nodes
* @param dists class distributions of successor nodes
* @param att attribute used to split the node
* @param useHeuristic if use heuristic search for nominal attributes in multi-class problem
* @param useGini if use Gini index as splitting criterion
* @throws Exception if something goes wrong
*/
protected void makeSuccessors(FastVector BestFirstElements,Instances data,
int[][][] subsetSortedIndices, double[][][] subsetWeights,
double[][][] dists,
Attribute att, boolean useHeuristic, boolean useGini) throws Exception {
m_Successors = new BFTree[2];
for (int i=0; i<2; i++) {
m_Successors[i] = new BFTree();
m_Successors[i].m_isLeaf = true;
// class probability and distribution for this successor node
m_Successors[i].m_ClassProbs = new double[data.numClasses()];
m_Successors[i].m_Distribution = new double[data.numClasses()];
System.arraycopy(dists[att.index()][i], 0, m_Successors[i].m_ClassProbs,
0,m_Successors[i].m_ClassProbs.length);
System.arraycopy(dists[att.index()][i], 0, m_Successors[i].m_Distribution,
0,m_Successors[i].m_Distribution.length);
if (Utils.sum(m_Successors[i].m_ClassProbs)!=0)
Utils.normalize(m_Successors[i].m_ClassProbs);
// split information for this successor node
double[][] props = new double[data.numAttributes()][2];
double[][][] subDists = new double[data.numAttributes()][2][data.numClasses()];
double[][] totalSubsetWeights = new double[data.numAttributes()][2];
FastVector splitInfo = m_Successors[i].computeSplitInfo(m_Successors[i], data,
subsetSortedIndices[i], subsetWeights[i], subDists, props,
totalSubsetWeights, useHeuristic, useGini);
// branch proportion for this successor node
int splitIndex = ((Attribute)splitInfo.elementAt(1)).index();
m_Successors[i].m_Props = new double[2];
System.arraycopy(props[splitIndex], 0, m_Successors[i].m_Props, 0,
m_Successors[i].m_Props.length);
// sorted indices and weights of each attribute for this successor node
m_Successors[i].m_SortedIndices = new int[data.numAttributes()][0];
m_Successors[i].m_Weights = new double[data.numAttributes()][0];
for (int j=0; j<m_Successors[i].m_SortedIndices.length; j++) {
m_Successors[i].m_SortedIndices[j] = subsetSortedIndices[i][j];
m_Successors[i].m_Weights[j] = subsetWeights[i][j];
}
// distribution of each attribute for this successor node
m_Successors[i].m_Dists = new double[data.numAttributes()][2][data.numClasses()];
for (int j=0; j<subDists.length; j++) {
m_Successors[i].m_Dists[j] = subDists[j];
}
// total weights for this successor node.
m_Successors[i].m_TotalWeight = Utils.sum(totalSubsetWeights[splitIndex]);
// insert this successor node into BestFirstElements according to gini gain or information gain
// descendingly
if (BestFirstElements.size()==0) {
BestFirstElements.addElement(splitInfo);
} else {
double gGain = ((Double)(splitInfo.elementAt(3))).doubleValue();
int vectorSize = BestFirstElements.size();
FastVector lastNode = (FastVector)BestFirstElements.elementAt(vectorSize-1);
// If gini gain is less than that of last node in FastVector
if (gGain<((Double)(lastNode.elementAt(3))).doubleValue()) {
BestFirstElements.insertElementAt(splitInfo, vectorSize);
} else {
for (int j=0; j<vectorSize; j++) {
FastVector node = (FastVector)BestFirstElements.elementAt(j);
double nodeGain = ((Double)(node.elementAt(3))).doubleValue();
if (gGain>=nodeGain) {
BestFirstElements.insertElementAt(splitInfo, j);
break;
}
}
}
}
}
}
/**
* Compute sorted indices, weights and class probabilities for a given
* dataset. Return total weights of the data at the node.
*
* @param data training data
* @param sortedIndices sorted indices of instances at the node
* @param weights weights of instances at the node
* @param classProbs class probabilities at the node
* @return total weights of instances at the node
* @throws Exception if something goes wrong
*/
protected double computeSortedInfo(Instances data, int[][] sortedIndices, double[][] weights,
double[] classProbs) throws Exception {
// Create array of sorted indices and weights
double[] vals = new double[data.numInstances()];
for (int j = 0; j < data.numAttributes(); j++) {
if (j==data.classIndex()) continue;
weights[j] = new double[data.numInstances()];
if (data.attribute(j).isNominal()) {
// Handling nominal attributes. Putting indices of
// instances with missing values at the end.
sortedIndices[j] = new int[data.numInstances()];
int count = 0;
for (int i = 0; i < data.numInstances(); i++) {
Instance inst = data.instance(i);
if (!inst.isMissing(j)) {
sortedIndices[j][count] = i;
weights[j][count] = inst.weight();
count++;
}
}
for (int i = 0; i < data.numInstances(); i++) {
Instance inst = data.instance(i);
if (inst.isMissing(j)) {
sortedIndices[j][count] = i;
weights[j][count] = inst.weight();
count++;
}
}
} else {
// Sorted indices are computed for numeric attributes
// missing values instances are put to end (through Utils.sort() method)
for (int i = 0; i < data.numInstances(); i++) {
Instance inst = data.instance(i);
vals[i] = inst.value(j);
}
sortedIndices[j] = Utils.sort(vals);
for (int i = 0; i < data.numInstances(); i++) {
weights[j][i] = data.instance(sortedIndices[j][i]).weight();
}
}
}
// Compute initial class counts and total weight
double totalWeight = 0;
for (int i = 0; i < data.numInstances(); i++) {
Instance inst = data.instance(i);
classProbs[(int)inst.classValue()] += inst.weight();
totalWeight += inst.weight();
}
return totalWeight;
}
/**
* Compute the best splitting attribute, split point or subset and the best
* gini gain or iformation gain for a given dataset.
*
* @param node node to be split
* @param data training data
* @param sortedIndices sorted indices of the instances
* @param weights weights of the instances
* @param dists class distributions for each attribute
* @param props proportions of two branches
* @param totalSubsetWeights total weight of two subsets
* @param useHeuristic if use heuristic search for nominal attributes
* in multi-class problem
* @param useGini if use Gini index as splitting criterion
* @return split information about the node
* @throws Exception if something is wrong
*/
protected FastVector computeSplitInfo(BFTree node, Instances data, int[][] sortedIndices,
double[][] weights, double[][][] dists, double[][] props,
double[][] totalSubsetWeights, boolean useHeuristic, boolean useGini) throws Exception {
double[] splits = new double[data.numAttributes()];
String[] splitString = new String[data.numAttributes()];
double[] gains = new double[data.numAttributes()];
for (int i = 0; i < data.numAttributes(); i++) {
if (i==data.classIndex()) continue;
Attribute att = data.attribute(i);
if (att.isNumeric()) {
// numeric attribute
splits[i] = numericDistribution(props, dists, att, sortedIndices[i],
weights[i], totalSubsetWeights, gains, data, useGini);
} else {
// nominal attribute
splitString[i] = nominalDistribution(props, dists, att, sortedIndices[i],
weights[i], totalSubsetWeights, gains, data, useHeuristic, useGini);
}
}
int index = Utils.maxIndex(gains);
double mBestGain = gains[index];
Attribute att = data.attribute(index);
double mValue =Double.NaN;
String mString = null;
if (att.isNumeric()) mValue= splits[index];
else {
mString = splitString[index];
if (mString==null) mString = "";
}
// split information
FastVector splitInfo = new FastVector();
splitInfo.addElement(node);
splitInfo.addElement(att);
if (att.isNumeric()) splitInfo.addElement(new Double(mValue));
else splitInfo.addElement(mString);
splitInfo.addElement(new Double(mBestGain));
return splitInfo;
}
/**
* Compute distributions, proportions and total weights of two successor nodes for
* a given numeric attribute.
*
* @param props proportions of each two branches for each attribute
* @param dists class distributions of two branches for each attribute
* @param att numeric att split on
* @param sortedIndices sorted indices of instances for the attirubte
* @param weights weights of instances for the attirbute
* @param subsetWeights total weight of two branches split based on the attribute
* @param gains Gini gains or information gains for each attribute
* @param data training instances
* @param useGini if use Gini index as splitting criterion
* @return Gini gain or information gain for the given attribute
* @throws Exception if something goes wrong
*/
protected double numericDistribution(double[][] props, double[][][] dists,
Attribute att, int[] sortedIndices, double[] weights, double[][] subsetWeights,
double[] gains, Instances data, boolean useGini)
throws Exception {
double splitPoint = Double.NaN;
double[][] dist = null;
int numClasses = data.numClasses();
int i; // differ instances with or without missing values
double[][] currDist = new double[2][numClasses];
dist = new double[2][numClasses];
// Move all instances without missing values into second subset
double[] parentDist = new double[numClasses];
int missingStart = 0;
for (int j = 0; j < sortedIndices.length; j++) {
Instance inst = data.instance(sortedIndices[j]);
if (!inst.isMissing(att)) {
missingStart ++;
currDist[1][(int)inst.classValue()] += weights[j];
}
parentDist[(int)inst.classValue()] += weights[j];
}
System.arraycopy(currDist[1], 0, dist[1], 0, dist[1].length);
// Try all possible split points
double currSplit = data.instance(sortedIndices[0]).value(att);
double currGain;
double bestGain = -Double.MAX_VALUE;
for (i = 0; i < sortedIndices.length; i++) {
Instance inst = data.instance(sortedIndices[i]);
if (inst.isMissing(att)) {
break;
}
if (inst.value(att) > currSplit) {
double[][] tempDist = new double[2][numClasses];
for (int k=0; k<2; k++) {
//tempDist[k] = currDist[k];
System.arraycopy(currDist[k], 0, tempDist[k], 0, tempDist[k].length);
}
double[] tempProps = new double[2];
for (int k=0; k<2; k++) {
tempProps[k] = Utils.sum(tempDist[k]);
}
if (Utils.sum(tempProps) !=0) Utils.normalize(tempProps);
// split missing values
int index = missingStart;
while (index < sortedIndices.length) {
Instance insta = data.instance(sortedIndices[index]);
for (int j = 0; j < 2; j++) {
tempDist[j][(int)insta.classValue()] += tempProps[j] * weights[index];
}
index++;
}
if (useGini) currGain = computeGiniGain(parentDist,tempDist);
else currGain = computeInfoGain(parentDist,tempDist);
if (currGain > bestGain) {
bestGain = currGain;
// clean split point
splitPoint = Math.rint((inst.value(att) + currSplit)/2.0*100000)/100000.0;
for (int j = 0; j < currDist.length; j++) {
System.arraycopy(tempDist[j], 0, dist[j], 0,
dist[j].length);
}
}
}
currSplit = inst.value(att);
currDist[0][(int)inst.classValue()] += weights[i];
currDist[1][(int)inst.classValue()] -= weights[i];
}
// Compute weights
int attIndex = att.index();
props[attIndex] = new double[2];
for (int k = 0; k < 2; k++) {
props[attIndex][k] = Utils.sum(dist[k]);
}
if (Utils.sum(props[attIndex]) != 0) Utils.normalize(props[attIndex]);
// Compute subset weights
subsetWeights[attIndex] = new double[2];
for (int j = 0; j < 2; j++) {
subsetWeights[attIndex][j] += Utils.sum(dist[j]);
}
// clean gain
gains[attIndex] = Math.rint(bestGain*10000000)/10000000.0;
dists[attIndex] = dist;
return splitPoint;
}
/**
* Compute distributions, proportions and total weights of two successor
* nodes for a given nominal attribute.
*
* @param props proportions of each two branches for each attribute
* @param dists class distributions of two branches for each attribute
* @param att numeric att split on
* @param sortedIndices sorted indices of instances for the attirubte
* @param weights weights of instances for the attirbute
* @param subsetWeights total weight of two branches split based on the attribute
* @param gains Gini gains for each attribute
* @param data training instances
* @param useHeuristic if use heuristic search
* @param useGini if use Gini index as splitting criterion
* @return Gini gain for the given attribute
* @throws Exception if something goes wrong
*/
protected String nominalDistribution(double[][] props, double[][][] dists,
Attribute att, int[] sortedIndices, double[] weights, double[][] subsetWeights,
double[] gains, Instances data, boolean useHeuristic, boolean useGini)
throws Exception {
String[] values = new String[att.numValues()];
int numCat = values.length; // number of values of the attribute
int numClasses = data.numClasses();
String bestSplitString = "";
double bestGain = -Double.MAX_VALUE;
// class frequency for each value
int[] classFreq = new int[numCat];
for (int j=0; j<numCat; j++) classFreq[j] = 0;
double[] parentDist = new double[numClasses];
double[][] currDist = new double[2][numClasses];
double[][] dist = new double[2][numClasses];
int missingStart = 0;
for (int i = 0; i < sortedIndices.length; i++) {
Instance inst = data.instance(sortedIndices[i]);
if (!inst.isMissing(att)) {
missingStart++;
classFreq[(int)inst.value(att)] ++;
}
parentDist[(int)inst.classValue()] += weights[i];
}
// count the number of values that class frequency is not 0
int nonEmpty = 0;
for (int j=0; j<numCat; j++) {
if (classFreq[j]!=0) nonEmpty ++;
}
// attribute values which class frequency is not 0
String[] nonEmptyValues = new String[nonEmpty];
int nonEmptyIndex = 0;
for (int j=0; j<numCat; j++) {
if (classFreq[j]!=0) {
nonEmptyValues[nonEmptyIndex] = att.value(j);
nonEmptyIndex ++;
}
}
// attribute values which class frequency is 0
int empty = numCat - nonEmpty;
String[] emptyValues = new String[empty];
int emptyIndex = 0;
for (int j=0; j<numCat; j++) {
if (classFreq[j]==0) {
emptyValues[emptyIndex] = att.value(j);
emptyIndex ++;
}
}
if (nonEmpty<=1) {
gains[att.index()] = 0;
return "";
}
// for tow-class probloms
if (data.numClasses()==2) {
//// Firstly, for attribute values which class frequency is not zero
// probability of class 0 for each attribute value
double[] pClass0 = new double[nonEmpty];
// class distribution for each attribute value
double[][] valDist = new double[nonEmpty][2];
for (int j=0; j<nonEmpty; j++) {
for (int k=0; k<2; k++) {
valDist[j][k] = 0;
}
}
for (int i = 0; i < sortedIndices.length; i++) {
Instance inst = data.instance(sortedIndices[i]);
if (inst.isMissing(att)) {
break;
}
for (int j=0; j<nonEmpty; j++) {
if (att.value((int)inst.value(att)).compareTo(nonEmptyValues[j])==0) {
valDist[j][(int)inst.classValue()] += inst.weight();
break;
}
}
}
for (int j=0; j<nonEmpty; j++) {
double distSum = Utils.sum(valDist[j]);
if (distSum==0) pClass0[j]=0;
else pClass0[j] = valDist[j][0]/distSum;
}
// sort category according to the probability of class 0.0
String[] sortedValues = new String[nonEmpty];
for (int j=0; j<nonEmpty; j++) {
sortedValues[j] = nonEmptyValues[Utils.minIndex(pClass0)];
pClass0[Utils.minIndex(pClass0)] = Double.MAX_VALUE;
}
// Find a subset of attribute values that maximize impurity decrease
// for the attribute values that class frequency is not 0
String tempStr = "";
for (int j=0; j<nonEmpty-1; j++) {
currDist = new double[2][numClasses];
if (tempStr=="") tempStr="(" + sortedValues[j] + ")";
else tempStr += "|"+ "(" + sortedValues[j] + ")";
//System.out.println(sortedValues[j]);
for (int i=0; i<sortedIndices.length;i++) {
Instance inst = data.instance(sortedIndices[i]);
if (inst.isMissing(att)) {
break;
}
if (tempStr.indexOf
("(" + att.value((int)inst.value(att)) + ")")!=-1) {
currDist[0][(int)inst.classValue()] += weights[i];
} else currDist[1][(int)inst.classValue()] += weights[i];
}
double[][] tempDist = new double[2][numClasses];
for (int kk=0; kk<2; kk++) {
tempDist[kk] = currDist[kk];
}
double[] tempProps = new double[2];
for (int kk=0; kk<2; kk++) {
tempProps[kk] = Utils.sum(tempDist[kk]);
}
if (Utils.sum(tempProps)!=0) Utils.normalize(tempProps);
// split missing values
int mstart = missingStart;
while (mstart < sortedIndices.length) {
Instance insta = data.instance(sortedIndices[mstart]);
for (int jj = 0; jj < 2; jj++) {
tempDist[jj][(int)insta.classValue()] += tempProps[jj] * weights[mstart];
}
mstart++;
}
double currGain;
if (useGini) currGain = computeGiniGain(parentDist,tempDist);
else currGain = computeInfoGain(parentDist,tempDist);
if (currGain>bestGain) {
bestGain = currGain;
bestSplitString = tempStr;
for (int jj = 0; jj < 2; jj++) {
System.arraycopy(tempDist[jj], 0, dist[jj], 0,
dist[jj].length);
}
}
}
}
// multi-class problems (exhaustive search)
else if (!useHeuristic || nonEmpty<=4) {
//else if (!useHeuristic || nonEmpty==2) {
// Firstly, for attribute values which class frequency is not zero
for (int i=0; i<(int)Math.pow(2,nonEmpty-1); i++) {
String tempStr="";
currDist = new double[2][numClasses];
int mod;
int bit10 = i;
for (int j=nonEmpty-1; j>=0; j--) {
mod = bit10%2; // convert from 10bit to 2bit
if (mod==1) {
if (tempStr=="") tempStr = "("+nonEmptyValues[j]+")";
else tempStr += "|" + "("+nonEmptyValues[j]+")";
}
bit10 = bit10/2;
}
for (int j=0; j<sortedIndices.length;j++) {
Instance inst = data.instance(sortedIndices[j]);
if (inst.isMissing(att)) {
break;
}
if (tempStr.indexOf("("+att.value((int)inst.value(att))+")")!=-1) {
currDist[0][(int)inst.classValue()] += weights[j];
} else currDist[1][(int)inst.classValue()] += weights[j];
}
double[][] tempDist = new double[2][numClasses];
for (int k=0; k<2; k++) {
tempDist[k] = currDist[k];
}
double[] tempProps = new double[2];
for (int k=0; k<2; k++) {
tempProps[k] = Utils.sum(tempDist[k]);
}
if (Utils.sum(tempProps)!=0) Utils.normalize(tempProps);
// split missing values
int index = missingStart;
while (index < sortedIndices.length) {
Instance insta = data.instance(sortedIndices[index]);
for (int j = 0; j < 2; j++) {
tempDist[j][(int)insta.classValue()] += tempProps[j] * weights[index];
}
index++;
}
double currGain;
if (useGini) currGain = computeGiniGain(parentDist,tempDist);
else currGain = computeInfoGain(parentDist,tempDist);
if (currGain>bestGain) {
bestGain = currGain;
bestSplitString = tempStr;
for (int j = 0; j < 2; j++) {
//dist[jj] = new double[currDist[jj].length];
System.arraycopy(tempDist[j], 0, dist[j], 0,
dist[j].length);
}
}
}
}
// huristic method to solve multi-classes problems
else {
// Firstly, for attribute values which class frequency is not zero
int n = nonEmpty;
int k = data.numClasses(); // number of classes of the data
double[][] P = new double[n][k]; // class probability matrix
int[] numInstancesValue = new int[n]; // number of instances for an attribute value
double[] meanClass = new double[k]; // vector of mean class probability
int numInstances = data.numInstances(); // total number of instances
// initialize the vector of mean class probability
for (int j=0; j<meanClass.length; j++) meanClass[j]=0;
for (int j=0; j<numInstances; j++) {
Instance inst = (Instance)data.instance(j);
int valueIndex = 0; // attribute value index in nonEmptyValues
for (int i=0; i<nonEmpty; i++) {
if (att.value((int)inst.value(att)).compareToIgnoreCase(nonEmptyValues[i])==0){
valueIndex = i;
break;
}
}
P[valueIndex][(int)inst.classValue()]++;
numInstancesValue[valueIndex]++;
meanClass[(int)inst.classValue()]++;
}
// calculate the class probability matrix
for (int i=0; i<P.length; i++) {
for (int j=0; j<P[0].length; j++) {
if (numInstancesValue[i]==0) P[i][j]=0;
else P[i][j]/=numInstancesValue[i];
}
}
//calculate the vector of mean class probability
for (int i=0; i<meanClass.length; i++) {
meanClass[i]/=numInstances;
}
// calculate the covariance matrix
double[][] covariance = new double[k][k];
for (int i1=0; i1<k; i1++) {
for (int i2=0; i2<k; i2++) {
double element = 0;
for (int j=0; j<n; j++) {
element += (P[j][i2]-meanClass[i2])*(P[j][i1]-meanClass[i1])
*numInstancesValue[j];
}
covariance[i1][i2] = element;
}
}
Matrix matrix = new Matrix(covariance);
weka.core.matrix.EigenvalueDecomposition eigen =
new weka.core.matrix.EigenvalueDecomposition(matrix);
double[] eigenValues = eigen.getRealEigenvalues();
// find index of the largest eigenvalue
int index=0;
double largest = eigenValues[0];
for (int i=1; i<eigenValues.length; i++) {
if (eigenValues[i]>largest) {
index=i;
largest = eigenValues[i];
}
}
// calculate the first principle component
double[] FPC = new double[k];
Matrix eigenVector = eigen.getV();
double[][] vectorArray = eigenVector.getArray();
for (int i=0; i<FPC.length; i++) {
FPC[i] = vectorArray[i][index];
}
// calculate the first principle component scores
double[] Sa = new double[n];
for (int i=0; i<Sa.length; i++) {
Sa[i]=0;
for (int j=0; j<k; j++) {
Sa[i] += FPC[j]*P[i][j];
}
}
// sort category according to Sa(s)
double[] pCopy = new double[n];
System.arraycopy(Sa,0,pCopy,0,n);
String[] sortedValues = new String[n];
Arrays.sort(Sa);
for (int j=0; j<n; j++) {
sortedValues[j] = nonEmptyValues[Utils.minIndex(pCopy)];
pCopy[Utils.minIndex(pCopy)] = Double.MAX_VALUE;
}
// for the attribute values that class frequency is not 0
String tempStr = "";
for (int j=0; j<nonEmpty-1; j++) {
currDist = new double[2][numClasses];
if (tempStr=="") tempStr="(" + sortedValues[j] + ")";
else tempStr += "|"+ "(" + sortedValues[j] + ")";
for (int i=0; i<sortedIndices.length;i++) {
Instance inst = data.instance(sortedIndices[i]);
if (inst.isMissing(att)) {
break;
}
if (tempStr.indexOf
("(" + att.value((int)inst.value(att)) + ")")!=-1) {
currDist[0][(int)inst.classValue()] += weights[i];
} else currDist[1][(int)inst.classValue()] += weights[i];
}
double[][] tempDist = new double[2][numClasses];
for (int kk=0; kk<2; kk++) {
tempDist[kk] = currDist[kk];
}
double[] tempProps = new double[2];
for (int kk=0; kk<2; kk++) {
tempProps[kk] = Utils.sum(tempDist[kk]);
}
if (Utils.sum(tempProps)!=0) Utils.normalize(tempProps);
// split missing values
int mstart = missingStart;
while (mstart < sortedIndices.length) {
Instance insta = data.instance(sortedIndices[mstart]);
for (int jj = 0; jj < 2; jj++) {
tempDist[jj][(int)insta.classValue()] += tempProps[jj] * weights[mstart];
}
mstart++;
}
double currGain;
if (useGini) currGain = computeGiniGain(parentDist,tempDist);
else currGain = computeInfoGain(parentDist,tempDist);
if (currGain>bestGain) {
bestGain = currGain;
bestSplitString = tempStr;
for (int jj = 0; jj < 2; jj++) {
//dist[jj] = new double[currDist[jj].length];
System.arraycopy(tempDist[jj], 0, dist[jj], 0,
dist[jj].length);
}
}
}
}
// Compute weights
int attIndex = att.index();
props[attIndex] = new double[2];
for (int k = 0; k < 2; k++) {
props[attIndex][k] = Utils.sum(dist[k]);
}
if (!(Utils.sum(props[attIndex]) > 0)) {
for (int k = 0; k < props[attIndex].length; k++) {
props[attIndex][k] = 1.0 / (double)props[attIndex].length;
}
} else {
Utils.normalize(props[attIndex]);
}
// Compute subset weights
subsetWeights[attIndex] = new double[2];
for (int j = 0; j < 2; j++) {
subsetWeights[attIndex][j] += Utils.sum(dist[j]);
}
// Then, for the attribute values that class frequency is 0, split it into the
// most frequent branch
for (int j=0; j<empty; j++) {
if (props[attIndex][0]>=props[attIndex][1]) {
if (bestSplitString=="") bestSplitString = "(" + emptyValues[j] + ")";
else bestSplitString += "|" + "(" + emptyValues[j] + ")";
}
}
// clean gain
gains[attIndex] = Math.rint(bestGain*10000000)/10000000.0;
dists[attIndex] = dist;
return bestSplitString;
}
/**
* Split data into two subsets and store sorted indices and weights for two
* successor nodes.
*
* @param subsetIndices sorted indecis of instances for each attribute for two successor node
* @param subsetWeights weights of instances for each attribute for two successor node
* @param att attribute the split based on
* @param splitPoint split point the split based on if att is numeric
* @param splitStr split subset the split based on if att is nominal
* @param sortedIndices sorted indices of the instances to be split
* @param weights weights of the instances to bes split
* @param data training data
* @throws Exception if something goes wrong
*/
protected void splitData(int[][][] subsetIndices, double[][][] subsetWeights,
Attribute att, double splitPoint, String splitStr, int[][] sortedIndices,
double[][] weights, Instances data) throws Exception {
int j;
// For each attribute
for (int i = 0; i < data.numAttributes(); i++) {
if (i==data.classIndex()) continue;
int[] num = new int[2];
for (int k = 0; k < 2; k++) {
subsetIndices[k][i] = new int[sortedIndices[i].length];
subsetWeights[k][i] = new double[weights[i].length];
}
for (j = 0; j < sortedIndices[i].length; j++) {
Instance inst = data.instance(sortedIndices[i][j]);
if (inst.isMissing(att)) {
// Split instance up
for (int k = 0; k < 2; k++) {
if (m_Props[k] > 0) {
subsetIndices[k][i][num[k]] = sortedIndices[i][j];
subsetWeights[k][i][num[k]] = m_Props[k] * weights[i][j];
num[k]++;
}
}
} else {
int subset;
if (att.isNumeric()) {
subset = (inst.value(att) < splitPoint) ? 0 : 1;
} else { // nominal attribute
if (splitStr.indexOf
("(" + att.value((int)inst.value(att.index()))+")")!=-1) {
subset = 0;
} else subset = 1;
}
subsetIndices[subset][i][num[subset]] = sortedIndices[i][j];
subsetWeights[subset][i][num[subset]] = weights[i][j];
num[subset]++;
}
}
// Trim arrays
for (int k = 0; k < 2; k++) {
int[] copy = new int[num[k]];
System.arraycopy(subsetIndices[k][i], 0, copy, 0, num[k]);
subsetIndices[k][i] = copy;
double[] copyWeights = new double[num[k]];
System.arraycopy(subsetWeights[k][i], 0 ,copyWeights, 0, num[k]);
subsetWeights[k][i] = copyWeights;
}
}
}
/**
* Compute and return gini gain for given distributions of a node and its
* successor nodes.
*
* @param parentDist class distributions of parent node
* @param childDist class distributions of successor nodes
* @return Gini gain computed
*/
protected double computeGiniGain(double[] parentDist, double[][] childDist) {
double totalWeight = Utils.sum(parentDist);
if (totalWeight==0) return 0;
double leftWeight = Utils.sum(childDist[0]);
double rightWeight = Utils.sum(childDist[1]);
double parentGini = computeGini(parentDist, totalWeight);
double leftGini = computeGini(childDist[0],leftWeight);
double rightGini = computeGini(childDist[1], rightWeight);
return parentGini - leftWeight/totalWeight*leftGini -
rightWeight/totalWeight*rightGini;
}
/**
* Compute and return gini index for a given distribution of a node.
*
* @param dist class distributions
* @param total class distributions
* @return Gini index of the class distributions
*/
protected double computeGini(double[] dist, double total) {
if (total==0) return 0;
double val = 0;
for (int i=0; i<dist.length; i++) {
val += (dist[i]/total)*(dist[i]/total);
}
return 1- val;
}
/**
* Compute and return information gain for given distributions of a node
* and its successor nodes.
*
* @param parentDist class distributions of parent node
* @param childDist class distributions of successor nodes
* @return information gain computed
*/
protected double computeInfoGain(double[] parentDist, double[][] childDist) {
double totalWeight = Utils.sum(parentDist);
if (totalWeight==0) return 0;
double leftWeight = Utils.sum(childDist[0]);
double rightWeight = Utils.sum(childDist[1]);
double parentInfo = computeEntropy(parentDist, totalWeight);
double leftInfo = computeEntropy(childDist[0],leftWeight);
double rightInfo = computeEntropy(childDist[1], rightWeight);
return parentInfo - leftWeight/totalWeight*leftInfo -
rightWeight/totalWeight*rightInfo;
}
/**
* Compute and return entropy for a given distribution of a node.
*
* @param dist class distributions
* @param total class distributions
* @return entropy of the class distributions
*/
protected double computeEntropy(double[] dist, double total) {
if (total==0) return 0;
double entropy = 0;
for (int i=0; i<dist.length; i++) {
if (dist[i]!=0) entropy -= dist[i]/total * Utils.log2(dist[i]/total);
}
return entropy;
}
/**
* Make the node leaf node.
*
* @param data training data
*/
protected void makeLeaf(Instances data) {
m_Attribute = null;
m_isLeaf = true;
m_ClassValue=Utils.maxIndex(m_ClassProbs);
m_ClassAttribute = data.classAttribute();
}
/**
* Computes class probabilities for instance using the decision tree.
*
* @param instance the instance for which class probabilities is to be computed
* @return the class probabilities for the given instance
* @throws Exception if something goes wrong
*/
public double[] distributionForInstance(Instance instance)
throws Exception {
if (!m_isLeaf) {
// value of split attribute is missing
if (instance.isMissing(m_Attribute)) {
double[] returnedDist = new double[m_ClassProbs.length];
for (int i = 0; i < m_Successors.length; i++) {
double[] help =
m_Successors[i].distributionForInstance(instance);
if (help != null) {
for (int j = 0; j < help.length; j++) {
returnedDist[j] += m_Props[i] * help[j];
}
}
}
return returnedDist;
}
// split attribute is nonimal
else if (m_Attribute.isNominal()) {
if (m_SplitString.indexOf("(" +
m_Attribute.value((int)instance.value(m_Attribute)) + ")")!=-1)
return m_Successors[0].distributionForInstance(instance);
else return m_Successors[1].distributionForInstance(instance);
}
// split attribute is numeric
else {
if (instance.value(m_Attribute) < m_SplitValue)
return m_Successors[0].distributionForInstance(instance);
else
return m_Successors[1].distributionForInstance(instance);
}
}
// leaf node
else return m_ClassProbs;
}
/**
* Prints the decision tree using the protected toString method from below.
*
* @return a textual description of the classifier
*/
public String toString() {
if ((m_Distribution == null) && (m_Successors == null)) {
return "Best-First: No model built yet.";
}
return "Best-First Decision Tree\n" + toString(0)+"\n\n"
+"Size of the Tree: "+numNodes()+"\n\n"
+"Number of Leaf Nodes: "+numLeaves();
}
/**
* Outputs a tree at a certain level.
*
* @param level the level at which the tree is to be printed
* @return a tree at a certain level.
*/
protected String toString(int level) {
StringBuffer text = new StringBuffer();
// if leaf nodes
if (m_Attribute == null) {
if (Utils.isMissingValue(m_ClassValue)) {
text.append(": null");
} else {
double correctNum = Math.rint(m_Distribution[Utils.maxIndex(m_Distribution)]*100)/
100.0;
double wrongNum = Math.rint((Utils.sum(m_Distribution) -
m_Distribution[Utils.maxIndex(m_Distribution)])*100)/100.0;
String str = "(" + correctNum + "/" + wrongNum + ")";
text.append(": " + m_ClassAttribute.value((int) m_ClassValue)+ str);
}
} else {
for (int j = 0; j < 2; j++) {
text.append("\n");
for (int i = 0; i < level; i++) {
text.append("| ");
}
if (j==0) {
if (m_Attribute.isNumeric())
text.append(m_Attribute.name() + " < " + m_SplitValue);
else
text.append(m_Attribute.name() + "=" + m_SplitString);
} else {
if (m_Attribute.isNumeric())
text.append(m_Attribute.name() + " >= " + m_SplitValue);
else
text.append(m_Attribute.name() + "!=" + m_SplitString);
}
text.append(m_Successors[j].toString(level + 1));
}
}
return text.toString();
}
/**
* Compute size of the tree.
*
* @return size of the tree
*/
public int numNodes() {
if (m_isLeaf) {
return 1;
} else {
int size =1;
for (int i=0;i<m_Successors.length;i++) {
size+=m_Successors[i].numNodes();
}
return size;
}
}
/**
* Compute number of leaf nodes.
*
* @return number of leaf nodes
*/
public int numLeaves() {
if (m_isLeaf) return 1;
else {
int size=0;
for (int i=0;i<m_Successors.length;i++) {
size+=m_Successors[i].numLeaves();
}
return size;
}
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration describing the available options.
*/
public Enumeration listOptions() {
Vector result;
Enumeration en;
result = new Vector();
en = super.listOptions();
while (en.hasMoreElements())
result.addElement(en.nextElement());
result.addElement(new Option(
"\tThe pruning strategy.\n"
+ "\t(default: " + new SelectedTag(PRUNING_POSTPRUNING, TAGS_PRUNING) + ")",
"P", 1, "-P " + Tag.toOptionList(TAGS_PRUNING)));
result.addElement(new Option(
"\tThe minimal number of instances at the terminal nodes.\n"
+ "\t(default 2)",
"M", 1, "-M <min no>"));
result.addElement(new Option(
"\tThe number of folds used in the pruning.\n"
+ "\t(default 5)",
"N", 5, "-N <num folds>"));
result.addElement(new Option(
"\tDon't use heuristic search for nominal attributes in multi-class\n"
+ "\tproblem (default yes).\n",
"H", 0, "-H"));
result.addElement(new Option(
"\tDon't use Gini index for splitting (default yes),\n"
+ "\tif not information is used.",
"G", 0, "-G"));
result.addElement(new Option(
"\tDon't use error rate in internal cross-validation (default yes), \n"
+ "\tbut root mean squared error.",
"R", 0, "-R"));
result.addElement(new Option(
"\tUse the 1 SE rule to make pruning decision.\n"
+ "\t(default no).",
"A", 0, "-A"));
result.addElement(new Option(
"\tPercentage of training data size (0-1]\n"
+ "\t(default 1).",
"C", 0, "-C"));
return result.elements();
}
/**
* Parses the options for this object. <p/>
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -S <num>
* Random number seed.
* (default 1)</pre>
*
* <pre> -D
* If set, classifier is run in debug mode and
* may output additional info to the console</pre>
*
* <pre> -P <UNPRUNED|POSTPRUNED|PREPRUNED>
* The pruning strategy.
* (default: POSTPRUNED)</pre>
*
* <pre> -M <min no>
* The minimal number of instances at the terminal nodes.
* (default 2)</pre>
*
* <pre> -N <num folds>
* The number of folds used in the pruning.
* (default 5)</pre>
*
* <pre> -H
* Don't use heuristic search for nominal attributes in multi-class
* problem (default yes).
* </pre>
*
* <pre> -G
* Don't use Gini index for splitting (default yes),
* if not information is used.</pre>
*
* <pre> -R
* Don't use error rate in internal cross-validation (default yes),
* but root mean squared error.</pre>
*
* <pre> -A
* Use the 1 SE rule to make pruning decision.
* (default no).</pre>
*
* <pre> -C
* Percentage of training data size (0-1]
* (default 1).</pre>
*
<!-- options-end -->
*
* @param options the options to use
* @throws Exception if setting of options fails
*/
public void setOptions(String[] options) throws Exception {
String tmpStr;
super.setOptions(options);
tmpStr = Utils.getOption('M', options);
if (tmpStr.length() != 0)
setMinNumObj(Integer.parseInt(tmpStr));
else
setMinNumObj(2);
tmpStr = Utils.getOption('N', options);
if (tmpStr.length() != 0)
setNumFoldsPruning(Integer.parseInt(tmpStr));
else
setNumFoldsPruning(5);
tmpStr = Utils.getOption('C', options);
if (tmpStr.length()!=0)
setSizePer(Double.parseDouble(tmpStr));
else
setSizePer(1);
tmpStr = Utils.getOption('P', options);
if (tmpStr.length() != 0)
setPruningStrategy(new SelectedTag(tmpStr, TAGS_PRUNING));
else
setPruningStrategy(new SelectedTag(PRUNING_POSTPRUNING, TAGS_PRUNING));
setHeuristic(!Utils.getFlag('H',options));
setUseGini(!Utils.getFlag('G',options));
setUseErrorRate(!Utils.getFlag('R',options));
setUseOneSE(Utils.getFlag('A',options));
}
/**
* Gets the current settings of the Classifier.
*
* @return the current settings of the Classifier
*/
public String[] getOptions() {
int i;
Vector result;
String[] options;
result = new Vector();
options = super.getOptions();
for (i = 0; i < options.length; i++)
result.add(options[i]);
result.add("-M");
result.add("" + getMinNumObj());
result.add("-N");
result.add("" + getNumFoldsPruning());
if (!getHeuristic())
result.add("-H");
if (!getUseGini())
result.add("-G");
if (!getUseErrorRate())
result.add("-R");
if (getUseOneSE())
result.add("-A");
result.add("-C");
result.add("" + getSizePer());
result.add("-P");
result.add("" + getPruningStrategy());
return (String[]) result.toArray(new String[result.size()]);
}
/**
* Return an enumeration of the measure names.
*
* @return an enumeration of the measure names
*/
public Enumeration enumerateMeasures() {
Vector result = new Vector();
result.addElement("measureTreeSize");
return result.elements();
}
/**
* Return number of tree size.
*
* @return number of tree size
*/
public double measureTreeSize() {
return numNodes();
}
/**
* Returns the value of the named measure
*
* @param additionalMeasureName the name of the measure to query for its value
* @return the value of the named measure
* @throws IllegalArgumentException if the named measure is not supported
*/
public double getMeasure(String additionalMeasureName) {
if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) {
return measureTreeSize();
} else {
throw new IllegalArgumentException(additionalMeasureName
+ " not supported (Best-First)");
}
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String pruningStrategyTipText() {
return "Sets the pruning strategy.";
}
/**
* Sets the pruning strategy.
*
* @param value the strategy
*/
public void setPruningStrategy(SelectedTag value) {
if (value.getTags() == TAGS_PRUNING) {
m_PruningStrategy = value.getSelectedTag().getID();
}
}
/**
* Gets the pruning strategy.
*
* @return the current strategy.
*/
public SelectedTag getPruningStrategy() {
return new SelectedTag(m_PruningStrategy, TAGS_PRUNING);
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String minNumObjTipText() {
return "Set minimal number of instances at the terminal nodes.";
}
/**
* Set minimal number of instances at the terminal nodes.
*
* @param value minimal number of instances at the terminal nodes
*/
public void setMinNumObj(int value) {
m_minNumObj = value;
}
/**
* Get minimal number of instances at the terminal nodes.
*
* @return minimal number of instances at the terminal nodes
*/
public int getMinNumObj() {
return m_minNumObj;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String numFoldsPruningTipText() {
return "Number of folds in internal cross-validation.";
}
/**
* Set number of folds in internal cross-validation.
*
* @param value the number of folds
*/
public void setNumFoldsPruning(int value) {
m_numFoldsPruning = value;
}
/**
* Set number of folds in internal cross-validation.
*
* @return number of folds in internal cross-validation
*/
public int getNumFoldsPruning() {
return m_numFoldsPruning;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui.
*/
public String heuristicTipText() {
return "If heuristic search is used for binary split for nominal attributes.";
}
/**
* Set if use heuristic search for nominal attributes in multi-class problems.
*
* @param value if use heuristic search for nominal attributes in
* multi-class problems
*/
public void setHeuristic(boolean value) {
m_Heuristic = value;
}
/**
* Get if use heuristic search for nominal attributes in multi-class problems.
*
* @return if use heuristic search for nominal attributes in
* multi-class problems
*/
public boolean getHeuristic() {
return m_Heuristic;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui.
*/
public String useGiniTipText() {
return "If true the Gini index is used for splitting criterion, otherwise the information is used.";
}
/**
* Set if use Gini index as splitting criterion.
*
* @param value if use Gini index splitting criterion
*/
public void setUseGini(boolean value) {
m_UseGini = value;
}
/**
* Get if use Gini index as splitting criterion.
*
* @return if use Gini index as splitting criterion
*/
public boolean getUseGini() {
return m_UseGini;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui.
*/
public String useErrorRateTipText() {
return "If error rate is used as error estimate. if not, root mean squared error is used.";
}
/**
* Set if use error rate in internal cross-validation.
*
* @param value if use error rate in internal cross-validation
*/
public void setUseErrorRate(boolean value) {
m_UseErrorRate = value;
}
/**
* Get if use error rate in internal cross-validation.
*
* @return if use error rate in internal cross-validation.
*/
public boolean getUseErrorRate() {
return m_UseErrorRate;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui.
*/
public String useOneSETipText() {
return "Use the 1SE rule to make pruning decision.";
}
/**
* Set if use the 1SE rule to choose final model.
*
* @param value if use the 1SE rule to choose final model
*/
public void setUseOneSE(boolean value) {
m_UseOneSE = value;
}
/**
* Get if use the 1SE rule to choose final model.
*
* @return if use the 1SE rule to choose final model
*/
public boolean getUseOneSE() {
return m_UseOneSE;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui.
*/
public String sizePerTipText() {
return "The percentage of the training set size (0-1, 0 not included).";
}
/**
* Set training set size.
*
* @param value training set size
*/
public void setSizePer(double value) {
if ((value <= 0) || (value > 1))
System.err.println(
"The percentage of the training set size must be in range 0 to 1 "
+ "(0 not included) - ignored!");
else
m_SizePer = value;
}
/**
* Get training set size.
*
* @return training set size
*/
public double getSizePer() {
return m_SizePer;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5987 $");
}
/**
* Main method.
*
* @param args the options for the classifier
*/
public static void main(String[] args) {
runClassifier(new BFTree(), args);
}
}