/** * Copyright 2010 JBoss Inc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.drools.core.util; /* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ import java.io.Serializable; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.Collection; import java.util.Set; import java.util.Map; import java.util.Enumeration; import java.util.Iterator; import java.util.NoSuchElementException; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.locks.ReentrantLock; import org.drools.common.InternalFactHandle; import org.drools.core.util.AbstractHashTable.DoubleCompositeIndex; import org.drools.core.util.AbstractHashTable.FieldIndex; import org.drools.core.util.AbstractHashTable.Index; import org.drools.core.util.AbstractHashTable.SingleIndex; import org.drools.core.util.AbstractHashTable.TripleCompositeIndex; import org.drools.reteoo.LeftTuple; import org.drools.reteoo.RightTuple; public class ConcurrentHashTable { private static final long serialVersionUID = 510l; /* * The basic strategy is to subdivide the table among Segments, * each of which itself is a concurrently readable hash table. */ /* ---------------- Constants -------------- */ /** * The default initial capacity for this table, * used when not otherwise specified in a constructor. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not * otherwise specified in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not * otherwise specified in a constructor. */ static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The maximum capacity, used if a higher value is implicitly * specified by either of the constructors with arguments. MUST * be a power of two <= 1<<30 to ensure that entries are indexable * using ints. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound * constructor arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue * methods before resorting to locking. This is used to avoid * unbounded retries if tables undergo continuous modification * which would make it impossible to obtain an accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a * key's hash code are used to choose the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment[] segments; private Index index; private int startResult; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. This is critical * because ConcurrentHashMap uses power-of-two length hash tables, * that otherwise encounter collisions for hashCodes that do not * differ in lower or upper bits. */ private static int hash(int h) { // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); } /** * Returns the segment that should be used for key with given hash * @param hash the hash code for the key * @return the segment */ final Segment segmentFor(int hash) { return segments[(hash >>> segmentShift) & segmentMask]; } /* ---------------- Inner Classes -------------- */ /** * Segments are specialized versions of hash tables. This * subclasses from ReentrantLock opportunistically, just to * simplify some locking and avoid separate construction. */ static final class Segment extends ReentrantLock implements Serializable { /* * Segments maintain a table of entry lists that are ALWAYS * kept in a consistent state, so can be read without locking. * Next fields of nodes are immutable (final). All list * additions are performed at the front of each bin. This * makes it easy to check changes, and also fast to traverse. * When nodes would otherwise be changed, new nodes are * created to replace them. This works well for hash tables * since the bin lists tend to be short. (The average length * is less than two for the default load factor threshold.) * * Read operations can thus proceed without locking, but rely * on selected uses of volatiles to ensure that completed * write operations performed by other threads are * noticed. For most purposes, the "count" field, tracking the * number of elements, serves as that volatile variable * ensuring visibility. This is convenient because this field * needs to be read in many read operations anyway: * * - All (unsynchronized) read operations must first read the * "count" field, and should not look at table entries if * it is 0. * * - All (synchronized) write operations should write to * the "count" field after structurally changing any bin. * The operations must not take any action that could even * momentarily cause a concurrent read operation to see * inconsistent data. This is made easier by the nature of * the read operations in Map. For example, no operation * can reveal that the table has grown but the threshold * has not yet been updated, so there are no atomicity * requirements for this with respect to reads. * * As a guide, all critical volatile reads and writes to the * count field are marked in code comments. */ private static final long serialVersionUID = 510l; /** * The number of elements in this segment's region. */ transient volatile int tupleCount; transient volatile int keyCount; /** * Number of updates that alter the size of the table. This is * used during bulk-read methods to make sure they see a * consistent snapshot: If modCounts change during a traversal * of segments computing size or checking containsValue, then * we might have an inconsistent view of state so (usually) * must retry. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. * (The value of this field is always <tt>(int)(capacity * * loadFactor)</tt>.) */ transient int threshold; /** * The per-segment table. */ transient volatile RightTupleList[] table; /** * The load factor for the hash table. Even though this value * is same for all segments, it is replicated to avoid needing * links to outer object. * @serial */ final float loadFactor; private Index index; Segment(Index index, int initialCapacity, float lf) { loadFactor = lf; setTable( new RightTupleList[initialCapacity] ); this.index = index; } static final Segment[] newArray(int i) { return new Segment[i]; } /** * Sets table to new HashEntry array. * Call only while holding lock or in constructor. */ void setTable(RightTupleList[] newTable) { threshold = (int) (newTable.length * loadFactor); table = newTable; } /** * Returns properly casted first entry of bin for given hash. */ RightTupleList getFirst(int hash) { RightTupleList[] tab = table; return tab[hash & (tab.length - 1)]; } /* Specialized implementations of map methods */ // Object get(Object key, int hash) { // if (count != 0) { // read-volatile // RightTuple e = getFirst(hash); // while (e != null) { // if (e.hash == hash && key.equals(e.key)) { // Object v = e.value; // if (v != null) // return v; // return readValueUnderLock(e); // recheck // } // e = e.next; // } // } // return null; // } // // boolean containsKey(Object key, int hash) { // if (count != 0) { // read-volatile // HashEntry e = getFirst(hash); // while (e != null) { // if (e.hash == hash && key.equals(e.key)) // return true; // e = e.next; // } // } // return false; // } void add(final RightTuple rightTuple, int hashCode, Object object) { lock(); try { final RightTupleList entry = getOrCreate( hashCode, object ); rightTuple.setMemory( entry ); entry.add( rightTuple ); this.tupleCount++; } finally { unlock(); } } /** * Remove; match on key only if value null, else match both.\ */ void remove(RightTuple rightTuple, int hashCode, Object object) { lock(); try { int c = keyCount - 1; RightTupleList[] tab = table; int index = hashCode & (tab.length - 1); RightTupleList first = tab[index]; RightTupleList e = first; while ( e != null ) { if ( e.matches( object, hashCode ) ) { break; } e = (RightTupleList) e.next; } e.remove( rightTuple ); tupleCount--; if ( e.getFirst( ( RightTuple ) null ) == null ) { // list is empty, so remove it RightTupleList newFirst = (RightTupleList) e.getNext(); for ( RightTupleList p = first; p != e; p = (RightTupleList) p.getNext() ) { newFirst = new RightTupleList( p.getIndex(), hashCode, newFirst ); } keyCount = c; // write-volatile } } finally { unlock(); } } RightTupleList get(final int hashCode, final LeftTuple tuple, final InternalFactHandle factHandle) { //this.index.setCachedValue( tuple ); lock(); try { RightTupleList[] tab = table; int index = hashCode & (tab.length - 1); RightTupleList first = tab[index]; RightTupleList entry = first; while ( entry != null ) { if ( entry.matches( tuple, hashCode , factHandle ) ) { return entry; } entry = (RightTupleList) entry.getNext(); } return entry; } finally { unlock(); } } private RightTupleList getOrCreate(int hashCode, final Object object) { int c = keyCount; RightTupleList[] tab = table; int index = hashCode & (tab.length - 1); RightTupleList first = tab[index]; RightTupleList e = first; while ( e != null ) { if ( e.matches( object, hashCode ) ) { return e; } e = (RightTupleList) e.next; } if ( e == null ) { if ( c++ > threshold ) // ensure capacity rehash(); ++modCount; e = new RightTupleList( this.index, hashCode, first ); tab[index] = e; keyCount = c; // write-volatile } return e; } void rehash() { RightTupleList[] oldTable = table; int oldCapacity = oldTable.length; if ( oldCapacity >= MAXIMUM_CAPACITY ) return; /* * Reclassify nodes in each list to new Map. Because we are * using power-of-two expansion, the elements from each bin * must either stay at same index, or move with a power of two * offset. We eliminate unnecessary node creation by catching * cases where old nodes can be reused because their next * fields won't change. Statistically, at the default * threshold, only about one-sixth of them need cloning when * a table doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by any * reader thread that may be in the midst of traversing table * right now. */ RightTupleList[] newTable = new RightTupleList[oldCapacity << 1]; threshold = (int) (newTable.length * loadFactor); int sizeMask = newTable.length - 1; for ( int i = 0; i < oldCapacity; i++ ) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. RightTupleList e = oldTable[i]; if ( e != null ) { RightTupleList next = (RightTupleList) e.getNext(); int idx = e.hashCode() & sizeMask; // Single node on list if ( next == null ) newTable[idx] = e; else { // Reuse trailing consecutive sequence at same slot RightTupleList lastRun = e; int lastIdx = idx; for ( RightTupleList last = next; last != null; last = (RightTupleList) last.getNext() ) { int k = last.hashCode() & sizeMask; if ( k != lastIdx ) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes for ( RightTupleList p = e; p != lastRun; p = (RightTupleList) p.getNext() ) { int k = p.hashCode() & sizeMask; RightTupleList n = newTable[k]; newTable[k] = new RightTupleList( p, n ); } } } } table = newTable; } void clear() { if ( tupleCount != 0 ) { lock(); try { RightTupleList[] tab = table; for ( int i = 0; i < tab.length; i++ ) tab[i] = null; ++modCount; tupleCount = 0; // write-volatile keyCount = 0; } finally { unlock(); } } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial * capacity, load factor and concurrency level. * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive. */ public ConcurrentHashTable(final FieldIndex[] index, int initialCapacity, float loadFactor, int concurrencyLevel) { this.startResult = RightTupleIndexHashTable.PRIME; for ( int i = 0, length = index.length; i < length; i++ ) { this.startResult = RightTupleIndexHashTable.PRIME * this.startResult + index[i].getExtractor().getIndex(); } switch ( index.length ) { case 0 : throw new IllegalArgumentException( "FieldIndexHashTable cannot use an index[] of length 0" ); case 1 : this.index = new SingleIndex( index, this.startResult ); break; case 2 : this.index = new DoubleCompositeIndex( index, this.startResult ); break; case 3 : this.index = new TripleCompositeIndex( index, this.startResult ); break; default : throw new IllegalArgumentException( "FieldIndexHashTable cannot use an index[] of length great than 3" ); } if ( !(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0 ) throw new IllegalArgumentException(); if ( concurrencyLevel > MAX_SEGMENTS ) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while ( ssize < concurrencyLevel ) { ++sshift; ssize <<= 1; } segmentShift = 32 - sshift; segmentMask = ssize - 1; this.segments = Segment.newArray( ssize ); if ( initialCapacity > MAXIMUM_CAPACITY ) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if ( c * ssize < initialCapacity ) ++c; int cap = 1; while ( cap < c ) cap <<= 1; for ( int i = 0; i < this.segments.length; ++i ) this.segments[i] = new Segment( this.index, cap, loadFactor ); } /** * Creates a new, empty map with the specified initial capacity * and load factor and with the default concurrencyLevel (16). * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @throws IllegalArgumentException if the initial capacity of * elements is negative or the load factor is nonpositive * * @since 1.6 */ public ConcurrentHashTable(final FieldIndex[] index, int initialCapacity, float loadFactor) { this( index, initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL ); } /** * Creates a new, empty map with the specified initial capacity, * and with default load factor (0.75) and concurrencyLevel (16). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @throws IllegalArgumentException if the initial capacity of * elements is negative. */ public ConcurrentHashTable(final FieldIndex[] index, int initialCapacity) { this( index, initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL ); } /** * Creates a new, empty map with a default initial capacity (16), * load factor (0.75) and concurrencyLevel (16). */ public ConcurrentHashTable(final FieldIndex[] index) { this( index, DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL ); } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings */ public boolean isEmpty() { final Segment[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA * problems in which an element in one segment was added and * in another removed during traversal, in which case the * table was never actually empty at any point. Note the * similar use of modCounts in the size() and containsValue() * methods, which are the only other methods also susceptible * to ABA problems. */ int[] mc = new int[segments.length]; int mcsum = 0; for ( int i = 0; i < segments.length; ++i ) { if ( segments[i].tupleCount != 0 ) return false; else mcsum += mc[i] = segments[i].modCount; } // If mcsum happens to be zero, then we know we got a snapshot // before any modifications at all were made. This is // probably common enough to bother tracking. if ( mcsum != 0 ) { for ( int i = 0; i < segments.length; ++i ) { if ( segments[i].tupleCount != 0 || mc[i] != segments[i].modCount ) return false; } } return true; } /** * Returns the number of key-value mappings in this map. If the * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns * <tt>Integer.MAX_VALUE</tt>. * * @return the number of key-value mappings in this map */ public int size() { final Segment[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for ( int k = 0; k < RETRIES_BEFORE_LOCK; ++k ) { check = 0; sum = 0; int mcsum = 0; for ( int i = 0; i < segments.length; ++i ) { sum += segments[i].tupleCount; mcsum += mc[i] = segments[i].modCount; } if ( mcsum != 0 ) { for ( int i = 0; i < segments.length; ++i ) { check += segments[i].tupleCount; if ( mc[i] != segments[i].modCount ) { check = -1; // force retry break; } } } if ( check == sum ) break; } if ( check != sum ) { // Resort to locking all segments sum = 0; for ( int i = 0; i < segments.length; ++i ) segments[i].lock(); for ( int i = 0; i < segments.length; ++i ) sum += segments[i].tupleCount; for ( int i = 0; i < segments.length; ++i ) segments[i].unlock(); } if ( sum > Integer.MAX_VALUE ) return Integer.MAX_VALUE; else return (int) sum; } public void add(final RightTuple rightTuple) { Object object = rightTuple.getFactHandle().getObject(); final int hashCode = this.index.hashCodeOf( object ); segmentFor( hashCode ).add( rightTuple, hashCode, object ); } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key is null */ public void remove(final RightTuple rightTuple) { Object object = rightTuple.getFactHandle().getObject(); final int hashCode = this.index.hashCodeOf( object ); segmentFor( hashCode ).remove( rightTuple, hashCode, object ); } public RightTupleList get(final LeftTuple tuple, InternalFactHandle factHandle) { final int hashCode = this.index.hashCodeOf( tuple ); return segmentFor( hashCode ).get( hashCode, tuple, factHandle); } /** * Removes all of the mappings from this map. */ public void clear() { for ( int i = 0; i < segments.length; ++i ) segments[i].clear(); } }