/** * Helios, OpenSource Monitoring * Brought to you by the Helios Development Group * * Copyright 2007, Helios Development Group and individual contributors * as indicated by the @author tags. See the copyright.txt file in the * distribution for a full listing of individual contributors. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this software; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA, or see the FSF site: http://www.fsf.org. * */ package org.helios.apmrouter.collections; import org.helios.apmrouter.unsafe.UnsafeAdapter; import java.util.Arrays; /** * <p>Title: UnsafeLongArray</p> * <p>Description: Utility class for storing long arrays in direct memory with self resizing</p> * <p><b><font color='red'>!! NOTE !!  </font>:  </b>This class is disastrously THREAD UNSAFE. Only use with one thread at a time, or used one * of the concurrent/synchronized versions</p> * <p>Company: Helios Development Group LLC</p> * @author Whitehead (nwhitehead AT heliosdev DOT org) * <p><code>org.helios.apmrouter.collections.UnsafeLongArray</code></p> */ public class UnsafeLongArray extends UnsafeArray { // ================================================================================== // Constants used in the array sort // ================================================================================== /** The maximum number of runs in merge sort.*/ private static final int MAX_RUN_COUNT = 67; /** The maximum length of run in merge sort. */ private static final int MAX_RUN_LENGTH = 33; /** If the length of an array to be sorted is less than this constant, Quicksort is used in preference to merge sort. */ private static final int QUICKSORT_THRESHOLD = 286; /** If the length of an array to be sorted is less than this constant, insertion sort is used in preference to Quicksort. */ private static final int INSERTION_SORT_THRESHOLD = 47; // ================================================================================== /** The memory offset for a long array */ public static final long LONG_ARRAY_OFFSET = unsafe.arrayBaseOffset(long[].class); /** The memory offset for a double array */ public static final long DOUBLE_ARRAY_OFFSET = unsafe.arrayBaseOffset(double[].class); public static void main(String[] args) { log("Long ArrOff:" + unsafe.arrayBaseOffset(Long[].class)); log("Long IScale:" + unsafe.arrayIndexScale(Long[].class)); log("long ArrOff:" + unsafe.arrayBaseOffset(long[].class)); log("long IScale:" + unsafe.arrayIndexScale(long[].class)); log("=========================="); log("Double ArrOff:" + unsafe.arrayBaseOffset(Double[].class)); log("Double IScale:" + unsafe.arrayIndexScale(Double[].class)); log("double ArrOff:" + unsafe.arrayBaseOffset(double[].class)); log("double IScale:" + unsafe.arrayIndexScale(double[].class)); try { UnsafeLongArray ula = UnsafeArrayBuilder.newBuilder().sorted(true).initialCapacity(5).fixed(true).buildLongArray(); for(int i = 0; i < 5; i++) { ula.insert(i); } log("ULA:" + ula); log("ULA Arr:" + Arrays.toString(ula.getArray())); byte[] arr = ula.getBytes(); log("Arr Length:" + arr.length); // byte[] arr2 = new byte[arr.length]; // for(int i = 0; i < arr.length; i++) { // arr2[arr.length-(1+i)] = arr[i]; // } UnsafeLongArray ula2 = UnsafeArrayBuilder.newBuilder().sorted(true).initialCapacity(5).fixed(true).buildLongArray(); ula2.initAndLoad(arr); log("ULA2:" + ula2); log("ULA2 DOUBLE:" + Arrays.toString(ula2.asDoubleArray())); } catch (Exception ex) { ex.printStackTrace(System.err); } } /** * Creates a new UnsafeLongArray * @param initialCapacity The initial allocated capacity * @param sorted Indicates the array will be maintained in sorted order * @param fixed Indicates the capacity of the array will be fixed * @param maxCapacity The maximum capacity of the array * @param minCapacity The minimum capacity of the array * @param allocationIncrement The number of slots that will be allocated when the array needs to be extended * @param clearedSlotsFree The number of excess slots that are emptied by rollLefts before the array capacity is shrunk */ private UnsafeLongArray(int initialCapacity, boolean sorted, boolean fixed, int maxCapacity, int minCapacity, int allocationIncrement, int clearedSlotsFree) { super(initialCapacity, sorted, fixed, fixed ? initialCapacity : maxCapacity, minCapacity, allocationIncrement, clearedSlotsFree); } /** * Creates a new UnsafeLongArray. Used for cloning. * @param size The size of the clone * @param capacity The capacity of the clone * @param address The memory address of the array to be cloned * @param sorted Indicates the array will be maintained in sorted order * @param fixed Indicates the capacity of the array will be fixed * @param maxCapacity The maximum capacity of the array * @param minCapacity The minimum capacity of the array * @param allocationIncrement The number of slots that will be allocated when the array needs to be extended * @param clearedSlotsFree The number of excess slots that are emptied by rollLefts before the array capacity is shrunk */ private UnsafeLongArray(int size, int capacity, long address, boolean sorted, boolean fixed, int maxCapacity, int minCapacity, int allocationIncrement, int clearedSlotsFree) { super(size, capacity, address, sorted, fixed, maxCapacity, minCapacity, allocationIncrement, clearedSlotsFree); } /** * Creates a new fixed capacity and unsorted UnsafeLongArray with initial, min and max capacity set to the passed size. * For internal use. * @param size the initial capacity */ private UnsafeLongArray(int size) { this(size, false, true, size, size, 0, 0); } /** * Creates a new UnsafeLongArray from the passed builder * @param builder The builder to configure the new UnsafeLongArray * @param data The optional data load load * @return the new UnsafeLongArray */ static UnsafeLongArray build(UnsafeArrayBuilder builder, Object data) { UnsafeLongArray ula = new UnsafeLongArray(builder.initialCapacity(), builder.sorted(), builder.fixed(), builder.maxCapacity(), builder.minCapacity(), builder.allocationIncrement(), builder.clearedSlotsFree()); if(data!=null) { if(data instanceof long[]) { ula.load((long[])data); } else if(data instanceof UnsafeLongArray) { ula.load((UnsafeLongArray)data); } } return ula; } /** * Creates a new UnsafeLongArray from the passed builder * @param builder The builder to configure the new UnsafeLongArray * @return the new UnsafeLongArray */ static UnsafeLongArray build(UnsafeArrayBuilder builder) { return build(builder, null); } /** * {@inheritDoc} * @see org.helios.apmrouter.collections.UnsafeArray#getSlotSize() */ @Override protected int getSlotSize() { return 3; } public static long[] convert(byte[] arr) { int len = arr.length; if(len%8!=0) throw new RuntimeException("Mod check failed", new Throwable()); int arrsize = len/8; long[] larr = new long[arrsize]; UnsafeAdapter.copyMemory(arr, BYTE_ARRAY_OFFSET, larr, LONG_ARRAY_OFFSET, arr.length); return larr; } // ====================================================================================== // Standard Load Impls. // ====================================================================================== protected void initAndLoad(byte[] arr) { int len = arr.length; if(len%8!=0) throw new RuntimeException("Mod check failed", new Throwable()); size = len/8; freeMemory(address); address = allocateMemory(len << 3); UnsafeAdapter.copyMemory(arr, BYTE_ARRAY_OFFSET, null, address, arr.length); } /** * Loads this array from a long array * @param arr The array to load */ protected void load(long[] arr) { if(arr.length<1) return; if(arr.length>maxCapacity) throw new ArrayOverflowException("Passed array of length [" + arr.length + "] is too large for this UnsafeLongArray with a max capacity of [" + maxCapacity + "]", new Throwable()); freeMemory(address); address = allocateMemory(arr.length << 3); UnsafeAdapter.copyMemory(arr, LONG_ARRAY_OFFSET, null, address, arr.length << 3); size = capacity = arr.length; if(sorted) sort(); } /** * Loads this array from another UnsafeLongArray * @param ula The UnsafeLongArray to copy */ private void load(UnsafeLongArray ula) { if(ula.size>maxCapacity) throw new ArrayOverflowException("Passed UnsafeLongArray of size [" + ula.size + "] is too large for this UnsafeLongArray with a max capacity of [" + maxCapacity + "]", new Throwable()); freeMemory(address); address = allocateMemory(ula.size << 3); unsafe.copyMemory(ula.address, address, ula.size << 3); size = capacity = ula.size; if(sorted) sort(); } // ====================================================================================== /** * <p>Rolls all the entries in the array one slot to the right after the referenced index, * optionally extending the array capacity if it is full when this method is called. * Logically, this opens a new slot at the referenced index, and the new slot is set to the passed new value. * Once this method completes, the size of the array will have been incremented by 1, unless <b><code>fixedSize==true</code></b> * in which case both the size and the capacity will be unchanged.</p> * If this array is fixed capacity when <b><code>size==capacity</code></b>, * the right-most value of the array will be dropped, effectively creating a sliding-window when used with <b><code>index==0</code></b>. * <p><b>Note:</b> The rolling of the array values is performed by {@link sun.misc.Unsafe#copyMemory(long, long, long)}</p> * <p><b>Example</b> of calling <b><code>rollRight(1, 77, bool)</code></b> on an array of size 6 and capacity of 8</p> * <p>If this array is sorted, the index is checked for the passed value and a RuntimeException will be thrown if the index is incorrect. * @param index The index after which the remaining values are rolled to the right * @param newValue The value to place into the new slot * @return this array */ public UnsafeLongArray rollRight(int index, long newValue) { if(sorted && normalizedBinarySearch(newValue)!=index) throw new RuntimeException("The index [" + index + "] is incorrect for the value [" + newValue + "] for this sorted array", new Throwable()); rollRight(index); a(index, newValue); return this; } /** * <p>Rolls all the entries in the array one slot to the right after the referenced index, * optionally extending the array capacity if it is full when this method is called. * Logically, this opens a new slot at the referenced index, and the new slot is set to the passed new value. * Once this method completes, the size of the array will have been incremented by 1, unless <b><code>fixedSize==true</code></b> * in which case both the size and the capacity will be unchanged.</p> * If this array is fixed capacity when <b><code>size==capacity</code></b>, * the right-most value of the array will be dropped, effectively creating a sliding-window when used with <b><code>index==0</code></b>. * <p><b>Note:</b> The rolling of the array values is performed by {@link sun.misc.Unsafe#copyMemory(long, long, long)}</p> * <p><b>Example</b> of calling <b><code>rollRight(1, 77, bool)</code></b> on an array of size 6 and capacity of 8</p> * <p>If this array is sorted, the index is checked for the passed value and a RuntimeException will be thrown if the index is incorrect. * @param index The index after which the remaining values are rolled to the right * @param newValue The value to place into the new slot * @return the value of the dropped slot, or null if a slot was not dropped */ public Long rollRightCap(int index, long newValue) { if(sorted && normalizedBinarySearch(newValue)!=index) throw new RuntimeException("The index [" + index + "] is incorrect for the value [" + newValue + "] for this sorted array", new Throwable()); final Long dropped = rollRightCap(index); a(index, newValue); return dropped; } /** * <p>Rolls all the entries in the array one slot to the right after the referenced index, * optionally extending the array capacity if it is full when this method is called. * Logically, this opens a new slot at the referenced index, and the new slot is set to the passed new value. * Once this method completes, the size of the array will have been incremented by 1, unless <b><code>this.fixed==true</code></b> * in which case both the size and the capacity will be unchanged.</p> * If this array is fixed capacity when <b><code>size==capacity</code></b>, * the right-most value of the array will be dropped, effectively creating a sliding-window when used with <b><code>index==0</code></b>. * <p><b>Note:</b> The rolling of the array values is performed by {@link sun.misc.Unsafe#copyMemory(long, long, long)}</p> * <p><b>Example</b> of calling <b><code>rollRight(1, 77, bool)</code></b> on an array of size 6 and capacity of 8</p> * <b>Before Operation</b> * <pre> --> --> --> --> --> +--+ +--+ +--+ +--+ +--+ +--+ Size: 6 Index: 1 |23| |47| |19| |67| |42| |89| Capacity: 8 Value: 77 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ /^\ | Index </pre><b>After Operation</b><pre> +--+ +--+ +--+ +--+ +--+ +--+ +--+ Size: 7 |23| |77| |47| |19| |67| |42| |89| Capacity: 8 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ * </pre> * @param index The index after which the remaining values are rolled to the right * @return the rightmost item that was dropped to make room for the new value, or null if no slot was dropped */ protected Long rollRightCap(int index) { _check(); _checkc(index); final int numberOfSlotsToMove; final boolean incrSize; final Long dropped; if(size==capacity) { if(fixed) { numberOfSlotsToMove = size-index-1; incrSize=false; dropped = a(size-1); } else { extend(false, 1); numberOfSlotsToMove = size-index; incrSize=true; dropped = null; } } else { numberOfSlotsToMove = size-index; incrSize=true; dropped = null; } long srcOffset = (index << slotSize); long destOffset = ((index+1) << slotSize); long bytes = numberOfSlotsToMove << slotSize; unsafe.copyMemory( (address + srcOffset), // src: the address of the first index we want to roll (address + destOffset), // dest: the address of the slot after the one we want to roll bytes // bytes: the number of bytes in the entries that need to be rolled ); if(incrSize) size++; return dropped; } /** * Adjusts the binary search result to the actual index to insert into * @param v The long value to insert * @return the index to insert into */ public int normalizedBinarySearch(long v) { int index = binarySearch(v); return (index<0) ? (index*-1)-1 : index; } /** * {@inheritDoc} * @see org.helios.apmrouter.collections.UnsafeArray#append(java.lang.StringBuilder, int) */ @Override protected StringBuilder append(StringBuilder b, int i) { return b.append(a(i)); } /** * Appends the passed long values to this array. * If this array is sorted, this operation will trigger a sort once the append is complete * @param values the values to add * @return this array * TODO: If the size is fixed, make space for the appended values by dropping on the left */ public UnsafeLongArray append(long...values) { _check(); if(values!=null && values.length>0) { int vl = values.length; int newSize = vl + size; if(newSize > maxCapacity) throw new ArrayOverflowException("Passed array of length [" + vl + "] is too large for this UnsafeLongArray with a max capacity of [" + maxCapacity + "]", new Throwable()); while(newSize > capacity) { extend(false, vl); } UnsafeAdapter.copyMemory(values, LONG_ARRAY_OFFSET, null, address + (size << 3), vl << 3); size += vl; } if(sorted) sort(); return this; } /** * Returns this array as a byte array * @return this array as a byte array */ protected byte[] getBytes() { byte[] bytes = new byte[size*8]; UnsafeAdapter.copyMemory(null, address, bytes, BYTE_ARRAY_OFFSET, size << 3); return bytes; } protected byte[] getBytesReversed() { byte[] bytes = new byte[size*8]; int offset = BYTE_ARRAY_OFFSET + (size << 3); for(int i = 0; i < size; i++) { UnsafeAdapter.copyMemory(null, address, bytes, offset, 8); offset -= 8; } //unsafe.copyMemory(null, address, bytes, BYTE_ARRAY_OFFSET, size << 3); return bytes; } /** * Appends as many of the passed long values to this array as will fit up to the max capacity, discarding the remaining values. * If this array is sorted, this operation will trigger a sort once the append is complete * @param values the values to add * @return the number of dicarded values that were dropped * TODO: If the size is fixed, make space for the appended values by dropping on the left */ public int appendWhatFits(long...values) { _check(); int howManyWillFit = 0; int vl = 0; if(values!=null && values.length>0) { vl = values.length; int currentCap = (maxCapacity-size); howManyWillFit = vl<=currentCap ? vl : currentCap; int newSize = size + howManyWillFit; while(newSize > capacity) { extend(true, vl); } UnsafeAdapter.copyMemory(values, LONG_ARRAY_OFFSET, null, address + (size << 3), howManyWillFit << 3); size = newSize; } if(sorted) sort(); return vl-howManyWillFit; } /** * Inserts the passed long values to this array at the location returned from a binary search . * Throws a {@link RuntimeException} if this array is not sorted. * May throw a {@link PartialArrayOverflowException} if the capacity is exhausted in which case the exception will provide the number of values successfully inserted. * @param values the values to insert * @return this array */ public UnsafeLongArray insert(long...values) { _check(); if(!sorted) throw new RuntimeException("Cannot insert into an unsorted array", new Throwable()); if(values!=null && values.length>0) { for(int i = 0; i < values.length; i++) { try { _insert(values[i]); } catch (Exception e) { throw new PartialArrayOverflowException(i, "Partial overflow at item [" + i + "]", e); } } } return this; } /** * Inserts the passed long values to this array if they are not present already. * Throws a {@link RuntimeException} if this array is not sorted. * May throw a {@link PartialArrayOverflowException} if the capacity is exhausted in which case the exception will provide the number of values successfully inserted. * @param values the values to insert * @return the number of items inserted */ public int insertIfNotExists(long...values) { _check(); int insertCount = 0; if(values!=null && values.length>0) { for(int i = 0; i < values.length; i++) { try { if(binarySearch(values[i])<0) { _insert(values[i]); insertCount++; } } catch (Exception e) { throw new PartialArrayOverflowException(i, "Partial overflow at item [" + i + "]", e); } } } return insertCount; } /** * Inserts the passed long to the array, extending the size of the array if necessary * @param v the long to insert */ private void _insert(long v) { if(size==capacity) { extend(fixed, 1); // allow truncation if capacity is fixed } int index = binarySearch(v); if(index<0) index = (index*-1)-1; if(index==size) { append(v); } else if(size!=0) { rollRight(index, v); } else { a(0, v); size++; } //log("\n\t--->At Size:" + size + " Added:" + v + " Index:" + index + " " + toFullString()); } /** * <p>Removes the first instance of each of the passed long values from this array if they are present. * <p><b>NOTE:</b>This operation can be slow-ish if the array is not sorted. * @param values the values to remove * @return the number of removed values */ public int remove(long...values) { _check(); int removed = 0; if(values!=null && values.length>0) { for(long v: values) { if(sorted) { removed += _remove(binarySearch(v)) ? 1 : 0; } else { for(int i = 0; i < size; i++) { if(a(i)==v) { removed += _remove(i) ? 1 : 0; break; } } } } } //sort(this); shrink(); return removed; } /** * Removes all instances of each of the passed long values from this array if they are present * <p><b>NOTE:</b>This operation can be slow-ish if the array is not sorted. * @param values the values to remove * @return the number of removed items */ public int removeAll(long...values) { _check(); int _size = size; if(values!=null && values.length>0) { for(long v: values) { if(sorted) { boolean rem = true; while(rem) { rem = _remove(binarySearch(v)); } } else { for(int i = 0; i < size; i++) { if(a(i)==v) { _remove(i); } } } } } shrink(); return _size - size; } /** * Removes the long at the passed index, if the index is <b><code>>=0</code></b>, by rolling all the values at the next index down by one and decrementing the size * @param index The index to remove thhe value from * @return true if the value was removed, false if no change occured */ private boolean _remove(int index) { if(index>=0) { rollLeft(false, index); return true; } return false; } /** * Returns the long at the specified index * @param index The index of the long to retrieve * @return the specified long */ private long a(int index) { return unsafe.getLong(this.address + (index << 3)); } /** * Sets the long value at the specified index * @param index The index of the array to set the long at * @param value The long to set */ private void a(int index, long value) { unsafe.putLong(this.address + (index << 3), value); } /** * Returns the long at the specified index * @param index The index of the long to retrieve * @return the specified long */ public long get(int index) { _check(); _check(index); return unsafe.getLong(this.address + (index << 3)); } /** * Sets the long value at the specified index * @param index The index of the array to set the long at * @param value The long to set * @return this array */ public UnsafeLongArray set(int index, long value) { _check(); _check(index); unsafe.putLong(this.address + (index << 3), value); return this; } /** * Returns a traditional long array representing the longs in this array * @return a long array with the same values as this array */ public long[] getArray() { _check(); long[] arr = new long[size]; if(size>0) UnsafeAdapter.copyMemory(null, address, arr, LONG_ARRAY_OFFSET, size << 3); return arr; } /** * Returns a traditional long array representing the all the allocated slots this array * @return a long array representing the all the allocated slots this array * TODO: This should be deprecated unless there is any testing use for it. */ public long[] getAllocatedArray() { _check(); long[] arr = new long[capacity]; UnsafeAdapter.copyMemory(null, address, arr, LONG_ARRAY_OFFSET, capacity << 3); return arr; } /** * Returns this array as an array of doubles * @return an array of doubles */ public double[] asDoubleArray() { _check(); if(size==0) return new double[0]; double[] arr = new double[size]; UnsafeAdapter.copyMemory(null, address, arr, DOUBLE_ARRAY_OFFSET, size << 3); return arr; } /** * <p>Creates a clone of this array in a completely seprarate memory adddress, meaning * that changes to the clone are not seen by this array and vice-versa. * {@inheritDoc} * @see java.lang.Object#clone() */ @Override public UnsafeLongArray clone() { _check(); return new UnsafeLongArray(size, capacity, address, sorted, fixed, maxCapacity, minCapacity, allocationIncrement, clearedSlotsFree); } /** * Searches this unsafe long array for the specified value using the binary search algorithm based on {@link java.util.Arrays#binarySearch(long[], long)}. * If this unsafe long array contains multiple elements with the specified value, there is no guarantee which one will be found. * @param key the value to be searched for * @return index of the search key, if it is contained in this array; otherwise, <b><code>(-(insertion point) - 1)</code></b>. */ public int binarySearch(long key) { int low = 0; int high = size - 1; while (low <= high) { int mid = (low + high) >>> 1; long midVal = a(mid); if (midVal < key) low = mid + 1; else if (midVal > key) high = mid - 1; else return mid; // key found } return -(low + 1); // key not found. } /** * Sorts the array and returns * @return this array */ public UnsafeLongArray sort() { sort(this); return this; } /** * Calculates a low collision hash code for this array * @return the long hashcode */ public long longHashCode() { _check(); long h = 0; int off = 0; int hashPrime = hashCode(); for (int i = 0; i < size; i++) { h = (31*h + a(off++) + (hashPrime*h)); } return h; } /** * {@inheritDoc} * @see java.lang.Object#hashCode() */ @Override public int hashCode() { _check(); int result = 1; for(int i = 0; i < size; i++) { long element = a(i); int elementHash = (int)(element ^ (element >>> 32)); result = 31 * result + elementHash; } return result; } /** * * {@inheritDoc} * @see java.lang.Object#equals(java.lang.Object) */ @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } UnsafeLongArray other = (UnsafeLongArray) obj; if (address != other.address) { return false; } return true; } /** * Sorts the passed UnsafeLongArray. * @param ula The UnsafeLongArray to sort */ public static void sort(UnsafeLongArray ula) { int left = 0; int right = ula.size-1; // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { ula.sort(left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { if (ula.a(k) < ula.a(k + 1)) { // ascending while (++k <= right && ula.a(k - 1) <= ula.a(k)); } else if (ula.a(k) > ula.a(k + 1)) { // descending while (++k <= right && ula.a(k - 1) >= ula.a(k)); for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { long t = ula.a(lo); ula.a(lo, ula.a(hi)); ula.a(hi, t); } } else { // equal for (int m = MAX_RUN_LENGTH; ++k <= right && ula.a(k - 1) == ula.a(k); ) { if (--m == 0) { ula.sort(left, right, true); return; } } } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { ula.sort(left, right, true); return; } } // Check special cases if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } /* * Create temporary array, which is used for merging. * Implementation note: variable "right" is increased by 1. */ UnsafeLongArray b; byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1); if (odd == 0) { b = ula; ula = new UnsafeLongArray(b.size()); for (int i = left - 1; ++i < right; ula.a(i, b.a(i))); } else { b = new UnsafeLongArray(ula.size); } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && ula.a(p) <= ula.a(q)) { b.a(i, ula.a(p++)); } else { b.a(i, ula.a(q++)); } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b.a(i, ula.a(i)) ); run[++last] = right; } UnsafeLongArray t = ula; ula = b; b = t; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private void sort(int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { long ai = a(i + 1); while (ai < a(j)) { a(j + 1, a(j)); if (j-- == left) { break; } } a(j + 1, ai); } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a(++left) >= a(left - 1)); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { long a1 = a(k), a2 = a(left); if (a1 < a2) { a2 = a1; a1 = a(left); } while (a1 < a(--k)) { a(k + 2, a(k)); } a(++k + 1, a1); while (a2 < a(--k)) { a(k + 1, a(k)); } a(k + 1, a2); } long last = a(right); while (last < a(--right)) { a(right + 1, a(right)); } a(right + 1, last); } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (a(e2) < a(e1)) { long t = a(e2); a(e2, a(e1)); a(e1,t); } if (a(e3) < a(e2)) { long t = a(e3); a(e3, a(e2)); a(e2, t); if (t < a(e1)) { a(e2, a(e1)); a(e1, t); } } if (a(e4) < a(e3)) { long t = a(e4); a(e4, a(e3)); a(e3, t); if (t < a(e2)) { a(e3, a(e2)); a(e2, t); if (t < a(e1)) { a(e2, a(e1)); a(e1, t); } } } if (a(e5) < a(e4)) { long t = a(e5); a(e5, a(e4)); a(e4, t); if (t < a(e3)) { a(e4, a(e3)); a(e3, t); if (t < a(e2)) { a(e3, a(e2)); a(e2, t); if (t < a(e1)) { a(e2, a(e1)); a(e1, t); } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a(e1) != a(e2) && a(e2) != a(e3) && a(e3) != a(e4) && a(e4) != a(e5)) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ long pivot1 = a(e2); long pivot2 = a(e4); /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a(e2, a(left)); a(e4, a(right)); /* * Skip elements, which are less or greater than pivot values. */ while (a(++less) < pivot1); while (a(--great) > pivot2); /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { long ak = a(k); if (ak < pivot1) { // Move a(k) to left part a(k, a(less)); /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a(less, ak); ++less; } else if (ak > pivot2) { // Move a(k) to right part while (a(great) > pivot2) { if (great-- == k) { break outer; } } if (a(great) < pivot1) { // a[great] <= pivot2 a(k,a(less)); a(less,a(great)); ++less; } else { // pivot1 <= a[great] <= pivot2 a(k,a(great)); } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a(great, ak); --great; } } // Swap pivots into their final positions a(left, a(less - 1)); a(less - 1, pivot1); a(right, a(great + 1)); a(great + 1, pivot2); // Sort left and right parts recursively, excluding known pivots sort(left, less - 2, leftmost); sort(great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a(less) == pivot1) { ++less; } while (a(great) == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { long ak = a(k); if (ak == pivot1) { // Move a[k] to left part a(k, a(less)); a(less, ak); ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a(great) == pivot2) { if (great-- == k) { break outer; } } if (a(great) == pivot1) { // a[great] < pivot2 a(k, a(less)); /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a(less, pivot1); ++less; } else { // pivot1 < a[great] < pivot2 a(k, a(great)); } a(great, ak); --great; } } } // Sort center part recursively sort(less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ long pivot = a(e3); /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a(k) == pivot) { continue; } long ak = a(k); if (ak < pivot) { // Move a[k] to left part a(k, a(less)); a(less, ak); ++less; } else { // a[k] > pivot - Move a[k] to right part while (a(great) > pivot) { --great; } if (a(great) < pivot) { // a[great] <= pivot a(k, a(less)); a(less, a(great)); ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a(k, pivot); } a(great, ak); --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(left, less - 1, leftmost); sort(great + 1, right, false); } } } // //public static void mainy(String[] args) { // final long[] TEST_DATA = new long[]{0L, 1L, 2L}; // final long REMOVE = 1L; // log("Add longs to UnsafeLongArray Test"); // UnsafeLongArray ula = new UnsafeLongArray(3, Long.MAX_VALUE); // log("Empty:\n\t" + ula.toFullString() + "\n\t" + ula.toString() + "\n\tSize:" + ula.size()); // ula.insert(TEST_DATA); // log("Full At 3:\n\t" + ula.toFullString() + "\n\t" + ula.toString() + "\n\tSize:" + ula.size()); // ula.insert(TEST_DATA); // log("Full At 6:\n\t" + ula.toFullString() + "\n\t" + ula.toString() + "\n\tSize:" + ula.size()); // int removed = ula.removeAll(REMOVE); // log( "" + removed + " removed:\n\t" + ula.toFullString() + "\n\t" + ula.toString() + "\n\tSize:" + ula.size()); // log("BinSearch for :" + REMOVE + ":" + ula.binarySearch(REMOVE)); // log(ula.debugString()); // ula.insertIfNotExists(REMOVE); // log("" + REMOVE + " back in once:\n\t" + ula.toFullString() + "\n\t" + ula.toString() + "\n\tSize:" + ula.size()); // log(ula.debugString()); // // // // //} // //public static void mainx(String[] args) { // log("UnsafeLongArray Test"); // Random r = new Random(System.currentTimeMillis()); // int LONG_COUNT = 1000000; // int WARM_COUNT = 1000; // int WARMUP_LOOPS = 15002; // long[] TEST_DATA = new long[LONG_COUNT]; // for(int i = 0; i < LONG_COUNT; i++) { // TEST_DATA[i] = r.nextLong(); // } // UnsafeLongArray ula = new UnsafeLongArray(TEST_DATA); // long[] readOut = ula.getArray(); // long[] testData = new long[TEST_DATA.length]; // System.arraycopy(TEST_DATA, 0, testData, 0, TEST_DATA.length); // Arrays.sort(testData); // log("Equal:" + Arrays.equals(testData, readOut)); // for(int i = 0; i < LONG_COUNT; i++) { // assert testData[i] == ula.a(i); // } // ula.destroy(); // // //LONG_COUNT = 3000000; // //LONG_COUNT = 250000; // // log("Testing native long array sort"); // testData = new long[WARM_COUNT]; // for(int i = 0; i < WARMUP_LOOPS; i++) { // System.arraycopy(TEST_DATA, 0, testData, 0, testData.length); // Arrays.sort(testData); // } // log("Warmup Complete"); // testData = new long[TEST_DATA.length]; // System.arraycopy(TEST_DATA, 0, testData, 0, TEST_DATA.length); // SystemClock.startTimer(); // Arrays.sort(testData); // ElapsedTime et = SystemClock.endTimer(); // log("long array sorted:" + et + "\n\tAverage Per:" + et.avgNs(LONG_COUNT)); // // // // log("Testing UnsafeLongArray sort"); // testData = new long[WARM_COUNT]; // System.arraycopy(TEST_DATA, 0, testData, 0, testData.length); // for(int i = 0; i < WARMUP_LOOPS; i++) { // ula = new UnsafeLongArray(testData); // ula.destroy(); // } // log("Warmup Complete"); // SystemClock.startTimer(); // ula = new UnsafeLongArray(TEST_DATA); // et = SystemClock.endTimer(); // ula.destroy(); // log("UnsafeLongArray sorted:" + et + "\n\tAverage Per:" + et.avgNs(LONG_COUNT)); // // log("Testing native long array search"); // testData = new long[WARM_COUNT]; // System.arraycopy(TEST_DATA, 0, testData, 0, testData.length); // Arrays.sort(testData); // for(int i = 0; i < WARM_COUNT; i++) { // assert Arrays.binarySearch(testData, testData[i])==i; // } // log("Warmup Complete"); // testData = new long[TEST_DATA.length]; // System.arraycopy(TEST_DATA, 0, testData, 0, TEST_DATA.length); // Arrays.sort(testData); // SystemClock.startTimer(); // for(int i = 0; i < LONG_COUNT; i++) { // assert Arrays.binarySearch(testData, testData[i])==i; // assert Arrays.binarySearch(testData, testData[i]*31)!=i; // } // et = SystemClock.endTimer(); // log("long array search:" + et + "\n\tAverage Per:" + et.avgNs(LONG_COUNT)); // // log("Testing UnsafeLongArray search"); // testData = new long[WARM_COUNT]; // System.arraycopy(TEST_DATA, 0, testData, 0, testData.length); // ula = new UnsafeLongArray(testData); // Arrays.sort(testData); // for(int i = 0; i < WARM_COUNT; i++) { // assert testData[i] == ula.a(i); // assert ula.binarySearch(testData[i])==i; // assert ula.binarySearch(testData[i]*31)!=i; // } // ula.destroy(); // log("Warmup Complete"); // ula = new UnsafeLongArray(TEST_DATA); // testData = ula.getArray(); // SystemClock.startTimer(); // // for(int i = 0; i < LONG_COUNT; i++) { // assert ula.binarySearch(testData[i])==i; // assert ula.binarySearch(testData[i]*31)!=i; // } // // et = SystemClock.endTimer(); // ula.destroy(); // log("UnsafeLongArray search:" + et + "\n\tAverage Per:" + et.avgNs(LONG_COUNT)); // // final int HEAP_TEST_SIZE = 20; // // log("Testing long array heap size"); // long[][] arrays = new long[HEAP_TEST_SIZE][]; // ResourceHelper.memoryUsage(true); // long heapBefore = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage().getUsed(); // for(int i = 0; i < HEAP_TEST_SIZE; i++) { // arrays[i] = new long[LONG_COUNT]; // System.arraycopy(TEST_DATA, 0, arrays[i], 0, TEST_DATA.length); // } // long heapAfter = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage().getUsed(); // long heapDiff = heapAfter-heapBefore; // log("Long Array Heap:" + heapDiff); // arrays = null; // ResourceHelper.memoryUsage(true); // long heapAfterRelease = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage().getUsed(); // heapDiff = heapAfter-heapAfterRelease; // log("Long Array Heap Released:" + heapDiff); // // log("Testing UnsafeLongArray heap size"); // UnsafeLongArray[] ulas = new UnsafeLongArray[HEAP_TEST_SIZE]; // ResourceHelper.memoryUsage(true); // heapBefore = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage().getUsed(); // for(int i = 0; i < HEAP_TEST_SIZE; i++) { // ulas[i] = new UnsafeLongArray(TEST_DATA); // } // heapAfter = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage().getUsed(); // heapDiff = heapAfter-heapBefore; // log("UnsafeLongArray Heap:" + heapDiff); // for(int i = 0; i < HEAP_TEST_SIZE; i++) { // ulas[i].destroy(); // } // ulas = null; // ResourceHelper.memoryUsage(true); // heapAfterRelease = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage().getUsed(); // heapDiff = heapAfter-heapAfterRelease; // log("UnsafeLongArray Heap Released:" + heapDiff); // // //} //