/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package tree.love.providers.downloads.util; /** * Map of {@code long} to {@code long}. Unlike a normal array of longs, there * can be gaps in the indices. It is intended to be more memory efficient than * using a {@code HashMap}, both because it avoids auto-boxing keys and values * and its data structure doesn't rely on an extra entry object for each * mapping. * <p> * Note that this container keeps its mappings in an array data structure, using * a binary search to find keys. The implementation is not intended to be * appropriate for data structures that may contain large numbers of items. It * is generally slower than a traditional HashMap, since lookups require a * binary search and adds and removes require inserting and deleting entries in * the array. For containers holding up to hundreds of items, the performance * difference is not significant, less than 50%. * </p> * <p> * It is possible to iterate over the items in this container using * {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using * <code>keyAt(int)</code> with ascending values of the index will return the * keys in ascending order, or the values corresponding to the keys in ascending * order in the case of <code>valueAt(int)</code>. * </p> * * @hide */ public class LongSparseLongArray implements Cloneable { private long[] mKeys; private long[] mValues; private int mSize; /** * Creates a new SparseLongArray containing no mappings. */ public LongSparseLongArray() { this(10); } /** * Creates a new SparseLongArray containing no mappings that will not * require any additional memory allocation to store the specified number of * mappings. If you supply an initial capacity of 0, the sparse array will * be initialized with a light-weight representation not requiring any * additional array allocations. */ public LongSparseLongArray(int initialCapacity) { if (initialCapacity == 0) { mKeys = ContainerHelpers.EMPTY_LONGS; mValues = ContainerHelpers.EMPTY_LONGS; } else { initialCapacity = ArrayUtils.idealLongArraySize(initialCapacity); mKeys = new long[initialCapacity]; mValues = new long[initialCapacity]; } mSize = 0; } @Override public LongSparseLongArray clone() { LongSparseLongArray clone = null; try { clone = (LongSparseLongArray) super.clone(); clone.mKeys = mKeys.clone(); clone.mValues = mValues.clone(); } catch (CloneNotSupportedException cnse) { /* ignore */ } return clone; } /** * Gets the long mapped from the specified key, or <code>0</code> if no such * mapping has been made. */ public long get(long key) { return get(key, 0); } /** * Gets the long mapped from the specified key, or the specified value if no * such mapping has been made. */ public long get(long key, long valueIfKeyNotFound) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i < 0) { return valueIfKeyNotFound; } else { return mValues[i]; } } /** * Removes the mapping from the specified key, if there was any. */ public void delete(long key) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i >= 0) { removeAt(i); } } /** * Removes the mapping at the given index. */ public void removeAt(int index) { System.arraycopy(mKeys, index + 1, mKeys, index, mSize - (index + 1)); System.arraycopy(mValues, index + 1, mValues, index, mSize - (index + 1)); mSize--; } /** * Adds a mapping from the specified key to the specified value, replacing * the previous mapping from the specified key if there was one. */ public void put(long key, long value) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i >= 0) { mValues[i] = value; } else { i = ~i; if (mSize >= mKeys.length) { growKeyAndValueArrays(mSize + 1); } if (mSize - i != 0) { System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i); System.arraycopy(mValues, i, mValues, i + 1, mSize - i); } mKeys[i] = key; mValues[i] = value; mSize++; } } /** * Returns the number of key-value mappings that this SparseIntArray * currently stores. */ public int size() { return mSize; } /** * Given an index in the range <code>0...size()-1</code>, returns the key * from the <code>index</code>th key-value mapping that this SparseLongArray * stores. * <p> * The keys corresponding to indices in ascending order are guaranteed to be * in ascending order, e.g., <code>keyAt(0)</code> will return the smallest * key and <code>keyAt(size()-1)</code> will return the largest key. * </p> */ public long keyAt(int index) { return mKeys[index]; } /** * Given an index in the range <code>0...size()-1</code>, returns the value * from the <code>index</code>th key-value mapping that this SparseLongArray * stores. * <p> * The values corresponding to indices in ascending order are guaranteed to * be associated with keys in ascending order, e.g., <code>valueAt(0)</code> * will return the value associated with the smallest key and * <code>valueAt(size()-1)</code> will return the value associated with the * largest key. * </p> */ public long valueAt(int index) { return mValues[index]; } /** * Returns the index for which {@link #keyAt} would return the specified * key, or a negative number if the specified key is not mapped. */ public int indexOfKey(long key) { return ContainerHelpers.binarySearch(mKeys, mSize, key); } /** * Returns an index for which {@link #valueAt} would return the specified * key, or a negative number if no keys map to the specified value. Beware * that this is a linear search, unlike lookups by key, and that multiple * keys can map to the same value and this will find only one of them. */ public int indexOfValue(long value) { for (int i = 0; i < mSize; i++) if (mValues[i] == value) return i; return -1; } /** * Removes all key-value mappings from this SparseIntArray. */ public void clear() { mSize = 0; } /** * Puts a key/value pair into the array, optimizing for the case where the * key is greater than all existing keys in the array. */ public void append(long key, long value) { if (mSize != 0 && key <= mKeys[mSize - 1]) { put(key, value); return; } int pos = mSize; if (pos >= mKeys.length) { growKeyAndValueArrays(pos + 1); } mKeys[pos] = key; mValues[pos] = value; mSize = pos + 1; } private void growKeyAndValueArrays(int minNeededSize) { int n = ArrayUtils.idealLongArraySize(minNeededSize); long[] nkeys = new long[n]; long[] nvalues = new long[n]; System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length); System.arraycopy(mValues, 0, nvalues, 0, mValues.length); mKeys = nkeys; mValues = nvalues; } /** * {@inheritDoc} * <p> * This implementation composes a string by iterating over its mappings. */ @Override public String toString() { if (size() <= 0) { return "{}"; } StringBuilder buffer = new StringBuilder(mSize * 28); buffer.append('{'); for (int i = 0; i < mSize; i++) { if (i > 0) { buffer.append(", "); } long key = keyAt(i); buffer.append(key); buffer.append('='); long value = valueAt(i); buffer.append(value); } buffer.append('}'); return buffer.toString(); } }