package org.bouncycastle2.crypto.generators; import java.math.BigInteger; import java.security.SecureRandom; import org.bouncycastle2.util.BigIntegers; class DHParametersHelper { private static final BigInteger ONE = BigInteger.valueOf(1); private static final BigInteger TWO = BigInteger.valueOf(2); // Finds a pair of prime BigInteger's {p, q: p = 2q + 1} static BigInteger[] generateSafePrimes( int size, int certainty, SecureRandom random) { BigInteger p, q; int qLength = size - 1; for (;;) { q = new BigInteger(qLength, 2, random); // p <- 2q + 1 p = q.shiftLeft(1).add(ONE); if (p.isProbablePrime(certainty) && (certainty <= 2 || q.isProbablePrime(certainty))) { break; } } return new BigInteger[] { p, q }; } // Select a high order element of the multiplicative group Zp* // p and q must be s.t. p = 2*q + 1, where p and q are prime static BigInteger selectGenerator( BigInteger p, BigInteger q, SecureRandom random) { BigInteger pMinusTwo = p.subtract(TWO); BigInteger g; // Handbook of Applied Cryptography 4.86 do { g = BigIntegers.createRandomInRange(TWO, pMinusTwo, random); } while (g.modPow(TWO, p).equals(ONE) || g.modPow(q, p).equals(ONE)); /* // RFC 2631 2.1.1 (and see Handbook of Applied Cryptography 4.81) do { BigInteger h = createInRange(TWO, pMinusTwo, random); g = h.modPow(TWO, p); } while (g.equals(ONE)); */ return g; } }