/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package org.apache.bcel.classfile; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.CharArrayReader; import java.io.CharArrayWriter; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.FilterReader; import java.io.FilterWriter; import java.io.IOException; import java.io.PrintStream; import java.io.PrintWriter; import java.io.Reader; import java.io.Writer; import java.util.ArrayList; import java.util.List; import java.util.Locale; import java.util.zip.GZIPInputStream; import java.util.zip.GZIPOutputStream; import org.apache.bcel.Constants; import org.apache.bcel.generic.AnnotationEntryGen; import org.apache.bcel.generic.ConstantPoolGen; import org.apache.bcel.util.ByteSequence; /** * Utility functions that do not really belong to any class in particular. * * @version $Id: Utility.java 1620239 2014-08-24 23:40:27Z ebourg $ * @author <A HREF="mailto:m.dahm@gmx.de">M. Dahm</A> */ public abstract class Utility { private static int unwrap( ThreadLocal<Integer> tl ) { return tl.get().intValue(); } private static void wrap( ThreadLocal<Integer> tl, int value ) { tl.set(Integer.valueOf(value)); } private static ThreadLocal<Integer> consumed_chars = new ThreadLocal<Integer>() { @Override protected Integer initialValue() { return Integer.valueOf(0); } };/* How many chars have been consumed * during parsing in signatureToString(). * Read by methodSignatureToString(). * Set by side effect,but only internally. */ private static boolean wide = false; /* The `WIDE' instruction is used in the * byte code to allow 16-bit wide indices * for local variables. This opcode * precedes an `ILOAD', e.g.. The opcode * immediately following takes an extra * byte which is combined with the * following byte to form a * 16-bit value. */ /** * Convert bit field of flags into string such as `static final'. * * @param access_flags Access flags * @return String representation of flags */ public static String accessToString( int access_flags ) { return accessToString(access_flags, false); } /** * Convert bit field of flags into string such as `static final'. * * Special case: Classes compiled with new compilers and with the * `ACC_SUPER' flag would be said to be "synchronized". This is * because SUN used the same value for the flags `ACC_SUPER' and * `ACC_SYNCHRONIZED'. * * @param access_flags Access flags * @param for_class access flags are for class qualifiers ? * @return String representation of flags */ public static String accessToString( int access_flags, boolean for_class ) { StringBuilder buf = new StringBuilder(); int p = 0; for (int i = 0; p < Constants.MAX_ACC_FLAG; i++) { // Loop through known flags p = pow2(i); if ((access_flags & p) != 0) { /* Special case: Classes compiled with new compilers and with the * `ACC_SUPER' flag would be said to be "synchronized". This is * because SUN used the same value for the flags `ACC_SUPER' and * `ACC_SYNCHRONIZED'. */ if (for_class && ((p == Constants.ACC_SUPER) || (p == Constants.ACC_INTERFACE))) { continue; } buf.append(Constants.ACCESS_NAMES[i]).append(" "); } } return buf.toString().trim(); } /** * @param access_flags the class flags * * @return "class" or "interface", depending on the ACC_INTERFACE flag */ public static String classOrInterface( int access_flags ) { return ((access_flags & Constants.ACC_INTERFACE) != 0) ? "interface" : "class"; } /** * Disassemble a byte array of JVM byte codes starting from code line * `index' and return the disassembled string representation. Decode only * `num' opcodes (including their operands), use -1 if you want to * decompile everything. * * @param code byte code array * @param constant_pool Array of constants * @param index offset in `code' array * <EM>(number of opcodes, not bytes!)</EM> * @param length number of opcodes to decompile, -1 for all * @param verbose be verbose, e.g. print constant pool index * @return String representation of byte codes */ public static String codeToString( byte[] code, ConstantPool constant_pool, int index, int length, boolean verbose ) { StringBuilder buf = new StringBuilder(code.length * 20); // Should be sufficient ByteSequence stream = new ByteSequence(code); try { for (int i = 0; i < index; i++) { codeToString(stream, constant_pool, verbose); } for (int i = 0; stream.available() > 0; i++) { if ((length < 0) || (i < length)) { String indices = fillup(stream.getIndex() + ":", 6, true, ' '); buf.append(indices).append(codeToString(stream, constant_pool, verbose)) .append('\n'); } } } catch (IOException e) { System.out.println(buf.toString()); e.printStackTrace(); throw new ClassFormatException("Byte code error: " + e, e); } return buf.toString(); } public static String codeToString( byte[] code, ConstantPool constant_pool, int index, int length ) { return codeToString(code, constant_pool, index, length, true); } /** * Disassemble a stream of byte codes and return the * string representation. * * @param bytes stream of bytes * @param constant_pool Array of constants * @param verbose be verbose, e.g. print constant pool index * @return String representation of byte code * * @throws IOException if a failure from reading from the bytes argument occurs */ public static String codeToString( ByteSequence bytes, ConstantPool constant_pool, boolean verbose ) throws IOException { short opcode = (short) bytes.readUnsignedByte(); int default_offset = 0, low, high, npairs; int index, vindex, constant; int[] match, jump_table; int no_pad_bytes = 0, offset; StringBuilder buf = new StringBuilder(Constants.OPCODE_NAMES[opcode]); /* Special case: Skip (0-3) padding bytes, i.e., the * following bytes are 4-byte-aligned */ if ((opcode == Constants.TABLESWITCH) || (opcode == Constants.LOOKUPSWITCH)) { int remainder = bytes.getIndex() % 4; no_pad_bytes = (remainder == 0) ? 0 : 4 - remainder; for (int i = 0; i < no_pad_bytes; i++) { byte b; if ((b = bytes.readByte()) != 0) { System.err.println("Warning: Padding byte != 0 in " + Constants.OPCODE_NAMES[opcode] + ":" + b); } } // Both cases have a field default_offset in common default_offset = bytes.readInt(); } switch (opcode) { /* Table switch has variable length arguments. */ case Constants.TABLESWITCH: low = bytes.readInt(); high = bytes.readInt(); offset = bytes.getIndex() - 12 - no_pad_bytes - 1; default_offset += offset; buf.append("\tdefault = ").append(default_offset).append(", low = ").append(low) .append(", high = ").append(high).append("("); jump_table = new int[high - low + 1]; for (int i = 0; i < jump_table.length; i++) { jump_table[i] = offset + bytes.readInt(); buf.append(jump_table[i]); if (i < jump_table.length - 1) { buf.append(", "); } } buf.append(")"); break; /* Lookup switch has variable length arguments. */ case Constants.LOOKUPSWITCH: { npairs = bytes.readInt(); offset = bytes.getIndex() - 8 - no_pad_bytes - 1; match = new int[npairs]; jump_table = new int[npairs]; default_offset += offset; buf.append("\tdefault = ").append(default_offset).append(", npairs = ").append( npairs).append(" ("); for (int i = 0; i < npairs; i++) { match[i] = bytes.readInt(); jump_table[i] = offset + bytes.readInt(); buf.append("(").append(match[i]).append(", ").append(jump_table[i]).append(")"); if (i < npairs - 1) { buf.append(", "); } } buf.append(")"); } break; /* Two address bytes + offset from start of byte stream form the * jump target */ case Constants.GOTO: case Constants.IFEQ: case Constants.IFGE: case Constants.IFGT: case Constants.IFLE: case Constants.IFLT: case Constants.JSR: case Constants.IFNE: case Constants.IFNONNULL: case Constants.IFNULL: case Constants.IF_ACMPEQ: case Constants.IF_ACMPNE: case Constants.IF_ICMPEQ: case Constants.IF_ICMPGE: case Constants.IF_ICMPGT: case Constants.IF_ICMPLE: case Constants.IF_ICMPLT: case Constants.IF_ICMPNE: buf.append("\t\t#").append((bytes.getIndex() - 1) + bytes.readShort()); break; /* 32-bit wide jumps */ case Constants.GOTO_W: case Constants.JSR_W: buf.append("\t\t#").append(((bytes.getIndex() - 1) + bytes.readInt())); break; /* Index byte references local variable (register) */ case Constants.ALOAD: case Constants.ASTORE: case Constants.DLOAD: case Constants.DSTORE: case Constants.FLOAD: case Constants.FSTORE: case Constants.ILOAD: case Constants.ISTORE: case Constants.LLOAD: case Constants.LSTORE: case Constants.RET: if (wide) { vindex = bytes.readUnsignedShort(); wide = false; // Clear flag } else { vindex = bytes.readUnsignedByte(); } buf.append("\t\t%").append(vindex); break; /* * Remember wide byte which is used to form a 16-bit address in the * following instruction. Relies on that the method is called again with * the following opcode. */ case Constants.WIDE: wide = true; buf.append("\t(wide)"); break; /* Array of basic type. */ case Constants.NEWARRAY: buf.append("\t\t<").append(Constants.TYPE_NAMES[bytes.readByte()]).append(">"); break; /* Access object/class fields. */ case Constants.GETFIELD: case Constants.GETSTATIC: case Constants.PUTFIELD: case Constants.PUTSTATIC: index = bytes.readUnsignedShort(); buf.append("\t\t").append( constant_pool.constantToString(index, Constants.CONSTANT_Fieldref)).append( (verbose ? " (" + index + ")" : "")); break; /* Operands are references to classes in constant pool */ case Constants.NEW: case Constants.CHECKCAST: buf.append("\t"); //$FALL-THROUGH$ case Constants.INSTANCEOF: index = bytes.readUnsignedShort(); buf.append("\t<").append( constant_pool.constantToString(index, Constants.CONSTANT_Class)) .append(">").append((verbose ? " (" + index + ")" : "")); break; /* Operands are references to methods in constant pool */ case Constants.INVOKESPECIAL: case Constants.INVOKESTATIC: case Constants.INVOKEVIRTUAL: index = bytes.readUnsignedShort(); Constant c = constant_pool.getConstant(index); if (c.getTag() != Constants.CONSTANT_Methodref && c.getTag() != Constants.CONSTANT_InterfaceMethodref) { throw new ClassFormatException("Expected class `CONSTANT_Methodref' or 'CONSTANT_InterfaceMethodref' at index " + index + " and got " +c); } buf.append("\t").append( constant_pool.constantToString(c)) .append((verbose ? " (" + index + ")" : "")); break; case Constants.INVOKEINTERFACE: index = bytes.readUnsignedShort(); int nargs = bytes.readUnsignedByte(); // historical, redundant buf.append("\t").append( constant_pool .constantToString(index, Constants.CONSTANT_InterfaceMethodref)) .append(verbose ? " (" + index + ")\t" : "").append(nargs).append("\t") .append(bytes.readUnsignedByte()); // Last byte is a reserved space break; case Constants.INVOKEDYNAMIC: index = bytes.readUnsignedShort(); int ignored = bytes.readUnsignedShort(); ConstantInvokeDynamic id = (ConstantInvokeDynamic) constant_pool.getConstant(index, Constants.CONSTANT_InvokeDynamic); buf.append("\t").append("<dyn>.").append( constant_pool .constantToString(id.getNameAndTypeIndex(), Constants.CONSTANT_NameAndType)); if (verbose) { buf.append(" (" + index + "/" + id.getNameAndTypeIndex() +")"); } break; /* Operands are references to items in constant pool */ case Constants.LDC_W: case Constants.LDC2_W: index = bytes.readUnsignedShort(); buf.append("\t\t").append( constant_pool.constantToString(index, constant_pool.getConstant(index) .getTag())).append((verbose ? " (" + index + ")" : "")); break; case Constants.LDC: index = bytes.readUnsignedByte(); buf.append("\t\t").append( constant_pool.constantToString(index, constant_pool.getConstant(index) .getTag())).append((verbose ? " (" + index + ")" : "")); break; /* Array of references. */ case Constants.ANEWARRAY: index = bytes.readUnsignedShort(); buf.append("\t\t<").append( compactClassName(constant_pool.getConstantString(index, Constants.CONSTANT_Class), false)).append(">").append( (verbose ? " (" + index + ")" : "")); break; /* Multidimensional array of references. */ case Constants.MULTIANEWARRAY: { index = bytes.readUnsignedShort(); int dimensions = bytes.readUnsignedByte(); buf.append("\t<").append( compactClassName(constant_pool.getConstantString(index, Constants.CONSTANT_Class), false)).append(">\t").append(dimensions) .append((verbose ? " (" + index + ")" : "")); } break; /* Increment local variable. */ case Constants.IINC: if (wide) { vindex = bytes.readUnsignedShort(); constant = bytes.readShort(); wide = false; } else { vindex = bytes.readUnsignedByte(); constant = bytes.readByte(); } buf.append("\t\t%").append(vindex).append("\t").append(constant); break; default: if (Constants.NO_OF_OPERANDS[opcode] > 0) { for (int i = 0; i < Constants.TYPE_OF_OPERANDS[opcode].length; i++) { buf.append("\t\t"); switch (Constants.TYPE_OF_OPERANDS[opcode][i]) { case Constants.T_BYTE: buf.append(bytes.readByte()); break; case Constants.T_SHORT: buf.append(bytes.readShort()); break; case Constants.T_INT: buf.append(bytes.readInt()); break; default: // Never reached System.err.println("Unreachable default case reached!"); System.exit(-1); } } } } return buf.toString(); } public static String codeToString( ByteSequence bytes, ConstantPool constant_pool ) throws IOException { return codeToString(bytes, constant_pool, true); } /** * Shorten long class names, <em>java/lang/String</em> becomes * <em>String</em>. * * @param str The long class name * @return Compacted class name */ public static String compactClassName( String str ) { return compactClassName(str, true); } /** * Shorten long class name <em>str</em>, i.e., chop off the <em>prefix</em>, * if the * class name starts with this string and the flag <em>chopit</em> is true. * Slashes <em>/</em> are converted to dots <em>.</em>. * * @param str The long class name * @param prefix The prefix the get rid off * @param chopit Flag that determines whether chopping is executed or not * @return Compacted class name */ public static String compactClassName( String str, String prefix, boolean chopit ) { int len = prefix.length(); str = str.replace('/', '.'); // Is `/' on all systems, even DOS if (chopit) { // If string starts with `prefix' and contains no further dots if (str.startsWith(prefix) && (str.substring(len).indexOf('.') == -1)) { str = str.substring(len); } } return str; } /** * Shorten long class names, <em>java/lang/String</em> becomes * <em>java.lang.String</em>, * e.g.. If <em>chopit</em> is <em>true</em> the prefix <em>java.lang</em> * is also removed. * * @param str The long class name * @param chopit Flag that determines whether chopping is executed or not * @return Compacted class name */ public static String compactClassName( String str, boolean chopit ) { return compactClassName(str, "java.lang.", chopit); } /** * @return `flag' with bit `i' set to 1 */ public static int setBit( int flag, int i ) { return flag | pow2(i); } /** * @return `flag' with bit `i' set to 0 */ public static int clearBit( int flag, int i ) { int bit = pow2(i); return (flag & bit) == 0 ? flag : flag ^ bit; } /** * @return true, if bit `i' in `flag' is set */ public static boolean isSet( int flag, int i ) { return (flag & pow2(i)) != 0; } /** * Converts string containing the method return and argument types * to a byte code method signature. * * @param ret Return type of method * @param argv Types of method arguments * @return Byte code representation of method signature * * @throws ClassFormatException if the signature is for Void */ public static String methodTypeToSignature( String ret, String[] argv ) throws ClassFormatException { StringBuilder buf = new StringBuilder("("); String str; if (argv != null) { for (String element : argv) { str = getSignature(element); if (str.endsWith("V")) { throw new ClassFormatException("Invalid type: " + element); } buf.append(str); } } str = getSignature(ret); buf.append(")").append(str); return buf.toString(); } /** * @param signature Method signature * @return Array of argument types * @throws ClassFormatException */ public static String[] methodSignatureArgumentTypes( String signature ) throws ClassFormatException { return methodSignatureArgumentTypes(signature, true); } /** * @param signature Method signature * @param chopit Shorten class names ? * @return Array of argument types * @throws ClassFormatException */ public static String[] methodSignatureArgumentTypes( String signature, boolean chopit ) throws ClassFormatException { List<String> vec = new ArrayList<String>(); int index; try { // Read all declarations between for `(' and `)' if (signature.charAt(0) != '(') { throw new ClassFormatException("Invalid method signature: " + signature); } index = 1; // current string position while (signature.charAt(index) != ')') { vec.add(signatureToString(signature.substring(index), chopit)); //corrected concurrent private static field acess index += unwrap(consumed_chars); // update position } } catch (StringIndexOutOfBoundsException e) { // Should never occur throw new ClassFormatException("Invalid method signature: " + signature, e); } return vec.toArray(new String[vec.size()]); } /** * @param signature Method signature * @return return type of method * @throws ClassFormatException */ public static String methodSignatureReturnType( String signature ) throws ClassFormatException { return methodSignatureReturnType(signature, true); } /** * @param signature Method signature * @param chopit Shorten class names ? * @return return type of method * @throws ClassFormatException */ public static String methodSignatureReturnType( String signature, boolean chopit ) throws ClassFormatException { int index; String type; try { // Read return type after `)' index = signature.lastIndexOf(')') + 1; type = signatureToString(signature.substring(index), chopit); } catch (StringIndexOutOfBoundsException e) { // Should never occur throw new ClassFormatException("Invalid method signature: " + signature, e); } return type; } /** * Converts method signature to string with all class names compacted. * * @param signature to convert * @param name of method * @param access flags of method * @return Human readable signature */ public static String methodSignatureToString( String signature, String name, String access ) { return methodSignatureToString(signature, name, access, true); } public static String methodSignatureToString( String signature, String name, String access, boolean chopit ) { return methodSignatureToString(signature, name, access, chopit, null); } /** * A returntype signature represents the return value from a method. * It is a series of bytes in the following grammar: * * <pre> * <return_signature> ::= <field_type> | V * </pre> * * The character V indicates that the method returns no value. Otherwise, the * signature indicates the type of the return value. * An argument signature represents an argument passed to a method: * * <pre> * <argument_signature> ::= <field_type> * </pre> * * A method signature represents the arguments that the method expects, and * the value that it returns. * <pre> * <method_signature> ::= (<arguments_signature>) <return_signature> * <arguments_signature>::= <argument_signature>* * </pre> * * This method converts such a string into a Java type declaration like * `void main(String[])' and throws a `ClassFormatException' when the parsed * type is invalid. * * @param signature Method signature * @param name Method name * @param access Method access rights * @param chopit * @param vars * @return Java type declaration * @throws ClassFormatException */ public static String methodSignatureToString( String signature, String name, String access, boolean chopit, LocalVariableTable vars ) throws ClassFormatException { StringBuilder buf = new StringBuilder("("); String type; int index; int var_index = access.contains("static") ? 0 : 1; try { // Read all declarations between for `(' and `)' if (signature.charAt(0) != '(') { throw new ClassFormatException("Invalid method signature: " + signature); } index = 1; // current string position while (signature.charAt(index) != ')') { String param_type = signatureToString(signature.substring(index), chopit); buf.append(param_type); if (vars != null) { LocalVariable l = vars.getLocalVariable(var_index); if (l != null) { buf.append(" ").append(l.getName()); } } else { buf.append(" arg").append(var_index); } if ("double".equals(param_type) || "long".equals(param_type)) { var_index += 2; } else { var_index++; } buf.append(", "); //corrected concurrent private static field acess index += unwrap(consumed_chars); // update position } index++; // update position // Read return type after `)' type = signatureToString(signature.substring(index), chopit); } catch (StringIndexOutOfBoundsException e) { // Should never occur throw new ClassFormatException("Invalid method signature: " + signature, e); } if (buf.length() > 1) { buf.setLength(buf.length() - 2); } buf.append(")"); return access + ((access.length() > 0) ? " " : "") + // May be an empty string type + " " + name + buf.toString(); } // Guess what this does private static int pow2( int n ) { return 1 << n; } /** * Replace all occurrences of <em>old</em> in <em>str</em> with <em>new</em>. * * @param str String to permute * @param old String to be replaced * @param new_ Replacement string * @return new String object */ public static String replace( String str, String old, String new_ ) { int index, old_index; try { if (str.contains(old)) { // `old' found in str StringBuilder buf = new StringBuilder(); old_index = 0; // String start offset // While we have something to replace while ((index = str.indexOf(old, old_index)) != -1) { buf.append(str.substring(old_index, index)); // append prefix buf.append(new_); // append replacement old_index = index + old.length(); // Skip `old'.length chars } buf.append(str.substring(old_index)); // append rest of string str = buf.toString(); } } catch (StringIndexOutOfBoundsException e) { // Should not occur System.err.println(e); } return str; } /** * Converts signature to string with all class names compacted. * * @param signature to convert * @return Human readable signature */ public static String signatureToString( String signature ) { return signatureToString(signature, true); } /** * The field signature represents the value of an argument to a function or * the value of a variable. It is a series of bytes generated by the * following grammar: * * <PRE> * <field_signature> ::= <field_type> * <field_type> ::= <base_type>|<object_type>|<array_type> * <base_type> ::= B|C|D|F|I|J|S|Z * <object_type> ::= L<fullclassname>; * <array_type> ::= [<field_type> * * The meaning of the base types is as follows: * B byte signed byte * C char character * D double double precision IEEE float * F float single precision IEEE float * I int integer * J long long integer * L<fullclassname>; ... an object of the given class * S short signed short * Z boolean true or false * [<field sig> ... array * </PRE> * * This method converts this string into a Java type declaration such as * `String[]' and throws a `ClassFormatException' when the parsed type is * invalid. * * @param signature Class signature * @param chopit Flag that determines whether chopping is executed or not * @return Java type declaration * @throws ClassFormatException */ public static String signatureToString( String signature, boolean chopit ) { //corrected concurrent private static field acess wrap(consumed_chars, 1); // This is the default, read just one char like `B' try { switch (signature.charAt(0)) { case 'B': return "byte"; case 'C': return "char"; case 'D': return "double"; case 'F': return "float"; case 'I': return "int"; case 'J': return "long"; case 'L': { // Full class name int index = signature.indexOf(';'); // Look for closing `;' if (index < 0) { throw new ClassFormatException("Invalid signature: " + signature); } //corrected concurrent private static field acess wrap(consumed_chars, index + 1); // "Lblabla;" `L' and `;' are removed return compactClassName(signature.substring(1, index), chopit); } case 'S': return "short"; case 'Z': return "boolean"; case '[': { // Array declaration int n; StringBuilder brackets; String type; int consumed_chars; // Shadows global var brackets = new StringBuilder(); // Accumulate []'s // Count opening brackets and look for optional size argument for (n = 0; signature.charAt(n) == '['; n++) { brackets.append("[]"); } consumed_chars = n; // Remember value // The rest of the string denotes a `<field_type>' type = signatureToString(signature.substring(n), chopit); //corrected concurrent private static field acess //Utility.consumed_chars += consumed_chars; is replaced by: int _temp = unwrap(Utility.consumed_chars) + consumed_chars; wrap(Utility.consumed_chars, _temp); return type + brackets.toString(); } case 'V': return "void"; default: throw new ClassFormatException("Invalid signature: `" + signature + "'"); } } catch (StringIndexOutOfBoundsException e) { // Should never occur throw new ClassFormatException("Invalid signature: " + signature, e); } } /** Parse Java type such as "char", or "java.lang.String[]" and return the * signature in byte code format, e.g. "C" or "[Ljava/lang/String;" respectively. * * @param type Java type * @return byte code signature */ public static String getSignature( String type ) { StringBuilder buf = new StringBuilder(); char[] chars = type.toCharArray(); boolean char_found = false, delim = false; int index = -1; loop: for (int i = 0; i < chars.length; i++) { switch (chars[i]) { case ' ': case '\t': case '\n': case '\r': case '\f': if (char_found) { delim = true; } break; case '[': if (!char_found) { throw new RuntimeException("Illegal type: " + type); } index = i; break loop; default: char_found = true; if (!delim) { buf.append(chars[i]); } } } int brackets = 0; if (index > 0) { brackets = countBrackets(type.substring(index)); } type = buf.toString(); buf.setLength(0); for (int i = 0; i < brackets; i++) { buf.append('['); } boolean found = false; for (int i = Constants.T_BOOLEAN; (i <= Constants.T_VOID) && !found; i++) { if (Constants.TYPE_NAMES[i].equals(type)) { found = true; buf.append(Constants.SHORT_TYPE_NAMES[i]); } } if (!found) { buf.append('L').append(type.replace('.', '/')).append(';'); } return buf.toString(); } private static int countBrackets( String brackets ) { char[] chars = brackets.toCharArray(); int count = 0; boolean open = false; for (char c : chars) { switch (c) { case '[': if (open) { throw new RuntimeException("Illegally nested brackets:" + brackets); } open = true; break; case ']': if (!open) { throw new RuntimeException("Illegally nested brackets:" + brackets); } open = false; count++; break; default: // Don't care } } if (open) { throw new RuntimeException("Illegally nested brackets:" + brackets); } return count; } /** * Return type of method signature as a byte value as defined in <em>Constants</em> * * @param signature in format described above * @return type of method signature * @see Constants * * @throws ClassFormatException if signature is not a method signature */ public static byte typeOfMethodSignature( String signature ) throws ClassFormatException { int index; try { if (signature.charAt(0) != '(') { throw new ClassFormatException("Invalid method signature: " + signature); } index = signature.lastIndexOf(')') + 1; return typeOfSignature(signature.substring(index)); } catch (StringIndexOutOfBoundsException e) { throw new ClassFormatException("Invalid method signature: " + signature, e); } } /** * Return type of signature as a byte value as defined in <em>Constants</em> * * @param signature in format described above * @return type of signature * @see Constants * * @throws ClassFormatException if signature isn't a known type */ public static byte typeOfSignature( String signature ) throws ClassFormatException { try { switch (signature.charAt(0)) { case 'B': return Constants.T_BYTE; case 'C': return Constants.T_CHAR; case 'D': return Constants.T_DOUBLE; case 'F': return Constants.T_FLOAT; case 'I': return Constants.T_INT; case 'J': return Constants.T_LONG; case 'L': case 'T': return Constants.T_REFERENCE; case '[': return Constants.T_ARRAY; case 'V': return Constants.T_VOID; case 'Z': return Constants.T_BOOLEAN; case 'S': return Constants.T_SHORT; default: throw new ClassFormatException("Invalid method signature: " + signature); } } catch (StringIndexOutOfBoundsException e) { throw new ClassFormatException("Invalid method signature: " + signature, e); } } /** Map opcode names to opcode numbers. E.g., return Constants.ALOAD for "aload" */ public static short searchOpcode( String name ) { name = name.toLowerCase(Locale.ENGLISH); for (short i = 0; i < Constants.OPCODE_NAMES.length; i++) { if (Constants.OPCODE_NAMES[i].equals(name)) { return i; } } return -1; } /** * Convert (signed) byte to (unsigned) short value, i.e., all negative * values become positive. */ private static short byteToShort( byte b ) { return (b < 0) ? (short) (256 + b) : (short) b; } /** Convert bytes into hexadecimal string * * @param bytes an array of bytes to convert to hexadecimal * * @return bytes as hexadecimal string, e.g. 00 FA 12 ... */ public static String toHexString( byte[] bytes ) { StringBuilder buf = new StringBuilder(); for (int i = 0; i < bytes.length; i++) { short b = byteToShort(bytes[i]); String hex = Integer.toString(b, 0x10); if (b < 0x10) { buf.append('0'); } buf.append(hex); if (i < bytes.length - 1) { buf.append(' '); } } return buf.toString(); } /** * Return a string for an integer justified left or right and filled up with * `fill' characters if necessary. * * @param i integer to format * @param length length of desired string * @param left_justify format left or right * @param fill fill character * @return formatted int */ public static String format( int i, int length, boolean left_justify, char fill ) { return fillup(Integer.toString(i), length, left_justify, fill); } /** * Fillup char with up to length characters with char `fill' and justify it left or right. * * @param str string to format * @param length length of desired string * @param left_justify format left or right * @param fill fill character * @return formatted string */ public static String fillup( String str, int length, boolean left_justify, char fill ) { int len = length - str.length(); char[] buf = new char[(len < 0) ? 0 : len]; for (int j = 0; j < buf.length; j++) { buf[j] = fill; } if (left_justify) { return str + new String(buf); } return new String(buf) + str; } static boolean equals( byte[] a, byte[] b ) { int size; if ((size = a.length) != b.length) { return false; } for (int i = 0; i < size; i++) { if (a[i] != b[i]) { return false; } } return true; } public static void printArray( PrintStream out, Object[] obj ) { out.println(printArray(obj, true)); } public static void printArray( PrintWriter out, Object[] obj ) { out.println(printArray(obj, true)); } public static String printArray( Object[] obj ) { return printArray(obj, true); } public static String printArray( Object[] obj, boolean braces ) { return printArray(obj, braces, false); } public static String printArray( Object[] obj, boolean braces, boolean quote ) { if (obj == null) { return null; } StringBuilder buf = new StringBuilder(); if (braces) { buf.append('{'); } for (int i = 0; i < obj.length; i++) { if (obj[i] != null) { buf.append((quote ? "\"" : "")).append(obj[i].toString()).append( (quote ? "\"" : "")); } else { buf.append("null"); } if (i < obj.length - 1) { buf.append(", "); } } if (braces) { buf.append('}'); } return buf.toString(); } /** * @param ch the character to test if it's part of an identifier * * @return true, if character is one of (a, ... z, A, ... Z, 0, ... 9, _) */ public static boolean isJavaIdentifierPart( char ch ) { return ((ch >= 'a') && (ch <= 'z')) || ((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || (ch == '_'); } /** * Encode byte array it into Java identifier string, i.e., a string * that only contains the following characters: (a, ... z, A, ... Z, * 0, ... 9, _, $). The encoding algorithm itself is not too * clever: if the current byte's ASCII value already is a valid Java * identifier part, leave it as it is. Otherwise it writes the * escape character($) followed by: * * <ul> * <li> the ASCII value as a hexadecimal string, if the value is not in the range 200..247</li> * <li>a Java identifier char not used in a lowercase hexadecimal string, if the value is in the range 200..247</li> * </ul> * * <p>This operation inflates the original byte array by roughly 40-50%</p> * * @param bytes the byte array to convert * @param compress use gzip to minimize string * * @throws IOException if there's a gzip exception */ public static String encode( byte[] bytes, boolean compress ) throws IOException { if (compress) { ByteArrayOutputStream baos = new ByteArrayOutputStream(); GZIPOutputStream gos = new GZIPOutputStream(baos); gos.write(bytes, 0, bytes.length); gos.close(); baos.close(); bytes = baos.toByteArray(); } CharArrayWriter caw = new CharArrayWriter(); JavaWriter jw = new JavaWriter(caw); for (byte b : bytes) { int in = b & 0x000000ff; // Normalize to unsigned jw.write(in); } jw.close(); return caw.toString(); } /** * Decode a string back to a byte array. * * @param s the string to convert * @param uncompress use gzip to uncompress the stream of bytes * * @throws IOException if there's a gzip exception */ public static byte[] decode( String s, boolean uncompress ) throws IOException { char[] chars = s.toCharArray(); CharArrayReader car = new CharArrayReader(chars); JavaReader jr = new JavaReader(car); ByteArrayOutputStream bos = new ByteArrayOutputStream(); int ch; while ((ch = jr.read()) >= 0) { bos.write(ch); } bos.close(); car.close(); jr.close(); byte[] bytes = bos.toByteArray(); if (uncompress) { GZIPInputStream gis = new GZIPInputStream(new ByteArrayInputStream(bytes)); byte[] tmp = new byte[bytes.length * 3]; // Rough estimate int count = 0; int b; while ((b = gis.read()) >= 0) { tmp[count++] = (byte) b; } bytes = new byte[count]; System.arraycopy(tmp, 0, bytes, 0, count); } return bytes; } // A-Z, g-z, _, $ private static final int FREE_CHARS = 48; static int[] CHAR_MAP = new int[FREE_CHARS]; static int[] MAP_CHAR = new int[256]; // Reverse map private static final char ESCAPE_CHAR = '$'; static { int j = 0; for (int i = 'A'; i <= 'Z'; i++) { CHAR_MAP[j] = i; MAP_CHAR[i] = j; j++; } for (int i = 'g'; i <= 'z'; i++) { CHAR_MAP[j] = i; MAP_CHAR[i] = j; j++; } CHAR_MAP[j] = '$'; MAP_CHAR['$'] = j; j++; CHAR_MAP[j] = '_'; MAP_CHAR['_'] = j; } /** * Decode characters into bytes. * Used by <a href="Utility.html#decode(java.lang.String, boolean)">decode()</a> */ private static class JavaReader extends FilterReader { public JavaReader(Reader in) { super(in); } @Override public int read() throws IOException { int b = in.read(); if (b != ESCAPE_CHAR) { return b; } int i = in.read(); if (i < 0) { return -1; } if (((i >= '0') && (i <= '9')) || ((i >= 'a') && (i <= 'f'))) { // Normal escape int j = in.read(); if (j < 0) { return -1; } char[] tmp = { (char) i, (char) j }; int s = Integer.parseInt(new String(tmp), 16); return s; } return MAP_CHAR[i]; } @Override public int read( char[] cbuf, int off, int len ) throws IOException { for (int i = 0; i < len; i++) { cbuf[off + i] = (char) read(); } return len; } } /** * Encode bytes into valid java identifier characters. * Used by <a href="Utility.html#encode(byte[], boolean)">encode()</a> */ private static class JavaWriter extends FilterWriter { public JavaWriter(Writer out) { super(out); } @Override public void write( int b ) throws IOException { if (isJavaIdentifierPart((char) b) && (b != ESCAPE_CHAR)) { out.write(b); } else { out.write(ESCAPE_CHAR); // Escape character // Special escape if (b >= 0 && b < FREE_CHARS) { out.write(CHAR_MAP[b]); } else { // Normal escape char[] tmp = Integer.toHexString(b).toCharArray(); if (tmp.length == 1) { out.write('0'); out.write(tmp[0]); } else { out.write(tmp[0]); out.write(tmp[1]); } } } } @Override public void write( char[] cbuf, int off, int len ) throws IOException { for (int i = 0; i < len; i++) { write(cbuf[off + i]); } } @Override public void write( String str, int off, int len ) throws IOException { write(str.toCharArray(), off, len); } } /** * Escape all occurences of newline chars '\n', quotes \", etc. */ public static String convertString( String label ) { char[] ch = label.toCharArray(); StringBuilder buf = new StringBuilder(); for (char element : ch) { switch (element) { case '\n': buf.append("\\n"); break; case '\r': buf.append("\\r"); break; case '\"': buf.append("\\\""); break; case '\'': buf.append("\\'"); break; case '\\': buf.append("\\\\"); break; default: buf.append(element); break; } } return buf.toString(); } /** * Converts a list of AnnotationGen objects into a set of attributes * that can be attached to the class file. * * @param cp The constant pool gen where we can create the necessary name refs * @param vec A list of AnnotationGen objects */ public static Attribute[] getAnnotationAttributes(ConstantPoolGen cp,List<AnnotationEntryGen> vec) { if (vec.isEmpty()) { return new Attribute[0]; } try { int countVisible = 0; int countInvisible = 0; // put the annotations in the right output stream for (AnnotationEntryGen a : vec) { if (a.isRuntimeVisible()) { countVisible++; } else { countInvisible++; } } ByteArrayOutputStream rvaBytes = new ByteArrayOutputStream(); ByteArrayOutputStream riaBytes = new ByteArrayOutputStream(); DataOutputStream rvaDos = new DataOutputStream(rvaBytes); DataOutputStream riaDos = new DataOutputStream(riaBytes); rvaDos.writeShort(countVisible); riaDos.writeShort(countInvisible); // put the annotations in the right output stream for (AnnotationEntryGen a : vec) { if (a.isRuntimeVisible()) { a.dump(rvaDos); } else { a.dump(riaDos); } } rvaDos.close(); riaDos.close(); byte[] rvaData = rvaBytes.toByteArray(); byte[] riaData = riaBytes.toByteArray(); int rvaIndex = -1; int riaIndex = -1; if (rvaData.length>2) { rvaIndex = cp.addUtf8("RuntimeVisibleAnnotations"); } if (riaData.length>2) { riaIndex = cp.addUtf8("RuntimeInvisibleAnnotations"); } List<Attribute> newAttributes = new ArrayList<Attribute>(); if (rvaData.length>2) { newAttributes.add( new RuntimeVisibleAnnotations(rvaIndex,rvaData.length,new DataInputStream(new ByteArrayInputStream(rvaData)),cp.getConstantPool())); } if (riaData.length>2) { newAttributes.add( new RuntimeInvisibleAnnotations(riaIndex,riaData.length,new DataInputStream(new ByteArrayInputStream(riaData)),cp.getConstantPool())); } return newAttributes.toArray(new Attribute[newAttributes.size()]); } catch (IOException e) { System.err.println("IOException whilst processing annotations"); e.printStackTrace(); } return null; } /** * Annotations against a class are stored in one of four attribute kinds: * - RuntimeVisibleParameterAnnotations * - RuntimeInvisibleParameterAnnotations */ public static Attribute[] getParameterAnnotationAttributes( ConstantPoolGen cp, List<AnnotationEntryGen>[] /*Array of lists, array size depends on #params */vec) { int visCount[] = new int[vec.length]; int totalVisCount = 0; int invisCount[] = new int[vec.length]; int totalInvisCount = 0; try { for (int i = 0; i < vec.length; i++) { if (vec[i] != null) { for (AnnotationEntryGen element : vec[i]) { if (element.isRuntimeVisible()) { visCount[i]++; totalVisCount++; } else { invisCount[i]++; totalInvisCount++; } } } } // Lets do the visible ones ByteArrayOutputStream rvaBytes = new ByteArrayOutputStream(); DataOutputStream rvaDos = new DataOutputStream(rvaBytes); rvaDos.writeByte(vec.length); // First goes number of parameters for (int i = 0; i < vec.length; i++) { rvaDos.writeShort(visCount[i]); if (visCount[i] > 0) { for (AnnotationEntryGen element : vec[i]) { if (element.isRuntimeVisible()) { element.dump(rvaDos); } } } } rvaDos.close(); // Lets do the invisible ones ByteArrayOutputStream riaBytes = new ByteArrayOutputStream(); DataOutputStream riaDos = new DataOutputStream(riaBytes); riaDos.writeByte(vec.length); // First goes number of parameters for (int i = 0; i < vec.length; i++) { riaDos.writeShort(invisCount[i]); if (invisCount[i] > 0) { for (AnnotationEntryGen element : vec[i]) { if (!element.isRuntimeVisible()) { element.dump(riaDos); } } } } riaDos.close(); byte[] rvaData = rvaBytes.toByteArray(); byte[] riaData = riaBytes.toByteArray(); int rvaIndex = -1; int riaIndex = -1; if (totalVisCount > 0) { rvaIndex = cp.addUtf8("RuntimeVisibleParameterAnnotations"); } if (totalInvisCount > 0) { riaIndex = cp.addUtf8("RuntimeInvisibleParameterAnnotations"); } List<Attribute> newAttributes = new ArrayList<Attribute>(); if (totalVisCount > 0) { newAttributes .add(new RuntimeVisibleParameterAnnotations(rvaIndex, rvaData.length, new DataInputStream(new ByteArrayInputStream(rvaData)), cp.getConstantPool())); } if (totalInvisCount > 0) { newAttributes .add(new RuntimeInvisibleParameterAnnotations(riaIndex, riaData.length, new DataInputStream(new ByteArrayInputStream(riaData)), cp.getConstantPool())); } return newAttributes.toArray(new Attribute[newAttributes.size()]); } catch (IOException e) { System.err .println("IOException whilst processing parameter annotations"); e.printStackTrace(); } return null; } }