/* * ------------------------------------------------------------------------- * $Id: JMath.java,v 1.2 2009/02/16 05:19:12 jfrijters Exp $ * ------------------------------------------------------------------------- * Copyright (c) 1999 Visual Numerics Inc. All Rights Reserved. * * Permission to use, copy, modify, and distribute this software is freely * granted by Visual Numerics, Inc., provided that the copyright notice * above and the following warranty disclaimer are preserved in human * readable form. * * Because this software is licenses free of charge, it is provided * "AS IS", with NO WARRANTY. TO THE EXTENT PERMITTED BY LAW, VNI * DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED * TO ITS PERFORMANCE, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * VNI WILL NOT BE LIABLE FOR ANY DAMAGES WHATSOEVER ARISING OUT OF THE USE * OF OR INABILITY TO USE THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO DIRECT, * INDIRECT, SPECIAL, CONSEQUENTIAL, PUNITIVE, AND EXEMPLARY DAMAGES, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * * * This Java code is based on C code in the package fdlibm, * which can be obtained from www.netlib.org. * The original fdlibm C code contains the following notice. * * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * *-------------------------------------------------------------------------- */ package ikvm.internal; import java.util.Random; /* * Pure Java implementation of the standard java.lang.Math class. * This Java code is based on C code in the package fdlibm, * which can be obtained from www.netlib.org. * * @author Sun Microsystems (original C code in fdlibm) * @author John F. Brophy (translated from C to Java) */ @ikvm.lang.Internal public final class JMath { static public final double PI = 0x1.921fb54442d18p1; /* 3.14159265358979323846 */ static public final double E = 2.7182818284590452354; static private Random random; /** * Returns the absolute value of its argument. * @param x The argument, an integer. * @return Returns |x|. */ strictfp public static int abs(int x) { return ((x < 0) ? (-x) : x); } /** * Returns the absolute value of its argument. * @param x The argument, a long. * @return Returns |x|. */ strictfp public static long abs(long x) { return ((x < 0L) ? (-x) : x); } /** * Returns the absolute value of its argument. * @param x The argument, a float. * @return Returns |x|. */ strictfp public static float abs(float x) { return ((x <= 0.0f) ? (0.0f - x) : x); } /** * Returns the absolute value of its argument. * @param x The argument, a double. * @return Returns |x|. */ strictfp public static double abs(double x) { return ((x <= 0.0) ? (0.0 - x) : x); } /** * Returns the smaller of its two arguments. * @param x The first argument, an integer. * @param y The second argument, an integer. * @return Returns the smaller of x and y. */ strictfp public static int min(int x, int y) { return ((x < y) ? x : y); } /** * Returns the smaller of its two arguments. * @param x The first argument, a long. * @param y The second argument, a long. * @return Returns the smaller of x and y. */ strictfp public static long min(long x, long y) { return ((x < y) ? x : y); } /** * Returns the smaller of its two arguments. * @param x The first argument, a float. * @param y The second argument, a float. * @return Returns the smaller of x and y. * This function considers -0.0f to * be less than 0.0f. */ strictfp public static float min(float x, float y) { if (Float.isNaN(x)) { return x; } float ans = ((x <= y) ? x : y); if ((ans == 0.0f) && (Float.floatToIntBits(y) == 0x80000000)) { ans = y; } return ans; } /** * Returns the smaller of its two arguments. * @param x The first argument, a double. * @param y The second argument, a double. * @return Returns the smaller of x and y. * This function considers -0.0 to * be less than 0.0. */ strictfp public static double min(double x, double y) { if (Double.isNaN(x)) { return x; } double ans = ((x <= y) ? x : y); if ((x == 0.0) && (y == 0.0) && (Double.doubleToLongBits(y) == 0x8000000000000000L)) { ans = y; } return ans; } /** * Returns the larger of its two arguments. * @param x The first argument, an integer. * @param y The second argument, an integer. * @return Returns the larger of x and y. */ strictfp public static int max(int x, int y) { return ((x > y) ? x : y); } /** * Returns the larger of its two arguments. * @param x The first argument, a long. * @param y The second argument, a long. * @return Returns the larger of x and y. */ strictfp public static long max(long x, long y) { return ((x > y) ? x : y); } /** * Returns the larger of its two arguments. * @param x The first argument, a float. * @param y The second argument, a float. * @return Returns the larger of x and y. * This function considers -0.0f to * be less than 0.0f. */ strictfp public static float max(float x, float y) { if (Float.isNaN(x)) { return x; } float ans = ((x >= y) ? x : y); if ((ans == 0.0f) && (Float.floatToIntBits(x) == 0x80000000)) { ans = y; } return ans; } /** * Returns the larger of its two arguments. * @param x The first argument, a double. * @param y The second argument, a double. * @return Returns the larger of x and y. * This function considers -0.0 to * be less than 0.0. */ strictfp public static double max(double x, double y) { if (Double.isNaN(x)) { return x; } double ans = ((x >= y) ? x : y); if ((x == 0.0) && (y == 0.0) && (Double.doubleToLongBits(x) == 0x8000000000000000L)) { ans = y; } return ans; } /** * Returns the integer closest to the arguments. * @param x The argument, a float. * @return Returns the integer closest to x. */ strictfp public static int round(float x) { return (int) floor(x + 0.5f); } /** * Returns the long closest to the arguments. * @param x The argument, a double. * @return Returns the long closest to x. */ strictfp public static long round(double x) { return (long) floor(x + 0.5); } /** * Returns the random number. * @return Returns a random number from a uniform distribution. */ synchronized strictfp public static double random() { if (random == null) { random = new Random(); } return random.nextDouble(); } /* * This following code is derived from fdlibm, which contained * the following notice. * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static private final double huge = 1.0e+300; static private final double tiny = 1.0e-300; /** * Returns the value of its argument rounded toward * positive infinity to an integral value. * @param x The argument, a double. * @return Returns the smallest double, not less than x, * that is an integral value. */ static public double ceil(double x) { int exp; int sign; long ix; if (x == 0) { return x; } ix = Double.doubleToLongBits(x); sign = (int) ((ix >> 63) & 1); exp = ((int) (ix >> 52) & 0x7ff) - 0x3ff; if (exp < 0) { if (x < 0.0) { return NEGATIVE_ZERO; } else if (x == 0.0) { return x; } else { return 1.0; } } else if (exp < 53) { long mask = (0x000fffffffffffffL >>> exp); if ((mask & ix) == 0) { return x; // x is integral } if (x > 0.0) { ix += (0x0010000000000000L >> exp); } ix = ix & (~mask); } else if (exp == 1024) { // infinity return x; } return Double.longBitsToDouble(ix); } /** * Returns the value of its argument rounded toward * negative infinity to an integral value. * @param x The argument, a double. * @return Returns the smallest double, not greater than x, * that is an integral value. */ static public double floor(double x) { int exp; int sign; long ix; if (x == 0) { return x; } ix = Double.doubleToLongBits(x); sign = (int) ((ix >> 63) & 1); exp = ((int) (ix >> 52) & 0x7ff) - 0x3ff; if (exp < 0) { if (x < 0.0) { return -1.0; } else if (x == 0.0) { return x; } else { return 0.0; } } else if (exp < 53) { long mask = (0x000fffffffffffffL >>> exp); if ((mask & ix) == 0) { return x; // x is integral } if (x < 0.0) { ix += (0x0010000000000000L >> exp); } ix = ix & (~mask); } else if (exp == 1024) { // infinity return x; } return Double.longBitsToDouble(ix); } static private final double[] TWO52 = { 0x1.0p52, /* 4.50359962737049600000e+15 */ -0x1.0p52 /* -4.50359962737049600000e+15 */ }; static private final double NEGATIVE_ZERO = -0x0.0p0; /** * Returns the value of its argument rounded toward * the closest integral value. * @param x The argument, a double. * @return Returns the double closest to x * that is an integral value. */ static public double rint(double x) { int exp; int sign; long ix; double w; if (x == 0) { return x; } ix = Double.doubleToLongBits(x); sign = (int) ((ix >> 63) & 1); exp = ((int) (ix >> 52) & 0x7ff) - 0x3ff; if (exp < 0) { if (x < -0.5) { return -1.0; } else if (x > 0.5) { return 1.0; } else if (sign == 0) { return 0.0; } else { return NEGATIVE_ZERO; } } else if (exp < 53) { long mask = (0x000fffffffffffffL >>> exp); if ((mask & ix) == 0) { return x; // x is integral } } else if (exp == 1024) { // infinity return x; } x = Double.longBitsToDouble(ix); w = TWO52[sign] + x; return w - TWO52[sign]; } /** * Returns x REM p = x - [x/p]*p as if in infinite * precise arithmetic, where [x/p] is the (infinite bit) * integer nearest x/p (in half way case choose the even one). * @param x The dividend. * @param y The divisor. * @return The remainder computed according to the IEEE 754 standard. */ static public double IEEEremainder(double x, double p) { int hx; int hp; int sx; // unsigned int lx; // unsigned int lp; // unsigned double p_half; hx = __HI(x); /* high word of x */ lx = __LO(x); /* low word of x */ hp = __HI(p); /* high word of p */ lp = __LO(p); /* low word of p */ sx = hx & 0x80000000; hp &= 0x7fffffff; hx &= 0x7fffffff; /* purge off exception values */ if ((hp | lp) == 0) { return (x * p) / (x * p); /* p = 0 */ } if ((hx >= 0x7ff00000) || /* x not finite */ ((hp >= 0x7ff00000) && /* p is NaN */ (((hp - 0x7ff00000) | lp) != 0))) { return (x * p) / (x * p); } if (hp <= 0x7fdfffff) { x = x % (p + p); /* now x < 2p */ } if (((hx - hp) | (lx - lp)) == 0) { return zero * x; } x = abs(x); p = abs(p); if (hp < 0x00200000) { if ((x + x) > p) { x -= p; if ((x + x) >= p) { x -= p; } } } else { p_half = 0.5 * p; if (x > p_half) { x -= p; if (x >= p_half) { x -= p; } } } lx = __HI(x); lx ^= sx; return setHI(x, lx); } /* sqrt(x) * Return correctly rounded sqrt. * ------------------------------------------ * | Use the hardware sqrt if you have one | * ------------------------------------------ * Method: * Bit by bit method using integer arithmetic. (Slow, but portable) * 1. Normalization * Scale x to y in [1,4) with even powers of 2: * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then * sqrt(x) = 2^k * sqrt(y) * 2. Bit by bit computation * Let q = sqrt(y) truncated to i bit after binary point (q = 1), * i 0 * i+1 2 * s = 2*q , and y = 2 * ( y - q ). (1) * i i i i * * To compute q from q , one checks whether * i+1 i * * -(i+1) 2 * (q + 2 ) <= y. (2) * i * -(i+1) * If (2) is false, then q = q ; otherwise q = q + 2 . * i+1 i i+1 i * * With some algebric manipulation, it is not difficult to see * that (2) is equivalent to * -(i+1) * s + 2 <= y (3) * i i * * The advantage of (3) is that s and y can be computed by * i i * the following recurrence formula: * if (3) is false * * s = s , y = y ; (4) * i+1 i i+1 i * * otherwise, * -i -(i+1) * s = s + 2 , y = y - s - 2 (5) * i+1 i i+1 i i * * One may easily use induction to prove (4) and (5). * Note. Since the left hand side of (3) contain only i+2 bits, * it does not necessary to do a full (53-bit) comparison * in (3). * 3. Final rounding * After generating the 53 bits result, we compute one more bit. * Together with the remainder, we can decide whether the * result is exact, bigger than 1/2ulp, or less than 1/2ulp * (it will never equal to 1/2ulp). * The rounding mode can be detected by checking whether * huge + tiny is equal to huge, and whether huge - tiny is * equal to huge for some floating point number "huge" and "tiny". * * * Special cases: * sqrt(+-0) = +-0 ... exact * sqrt(inf) = inf * sqrt(-ve) = NaN ... with invalid signal * sqrt(NaN) = NaN ... with invalid signal for signaling NaN */ /** * Returns the square root of its argument. * @param x The argument, a double. * @return Returns the square root of x. */ static public double sqrt(double x) { long ix = Double.doubleToLongBits(x); /* take care of Inf and NaN */ if ((ix & 0x7ff0000000000000L) == 0x7ff0000000000000L) { /* sqrt(NaN)=NaN, sqrt(+inf)=+inf sqrt(-inf)=sNaN */ return (x * x) + x; } /* take care of zero */ if (x < 0.0) { return Double.NaN; } else if (x == 0.0) { return x; /* sqrt(+-0) = +-0 */ } /* normalize x */ long m = (ix >> 52); ix &= 0x000fffffffffffffL; /* add implicit bit, if not sub-normal */ if (m != 0) { ix |= 0x0010000000000000L; } m -= 1023L; /* unbias exponent */ if ((m & 1) != 0) { /* odd m, double x to make it even */ ix += ix; } m >>= 1; /* m = [m/2] */ m += 1023L; /* generate sqrt(x) bit by bit */ ix += ix; long q = 0L; /* q = sqrt(x) */ long s = 0L; long r = 0x0020000000000000L; /* r = moving bit from right to left */ while (r != 0) { long t = s + r; if (t <= ix) { s = t + r; ix -= t; q += r; } ix += ix; r >>= 1; } /* round */ if (ix != 0) { q += (q & 1L); } /* assemble result */ ix = (m << 52) | (0x000fffffffffffffL & (q >> 1)); return Double.longBitsToDouble(ix); } static private final double[] halF = { 0.5, -0.5 }; static private final double twom1000 = 0x1.0p-1000; /* 2**-1000=9.33263618503218878990e-302 */ static private final double o_threshold = 0x1.62e42fefa39efp9; /* 7.09782712893383973096e+02 */ static private final double u_threshold = -0x1.74910d52d3051p9; /* -7.45133219101941108420e+02 */ static private final double[] ln2HI = { 0x1.62e42feep-1, /* 6.93147180369123816490e-01 */ -0x1.62e42feep-1 }; /* -6.93147180369123816490e-01 */ static private final double[] ln2LO = { 0x1.a39ef35793c76p-33, /* 1.90821492927058770002e-10 */ -0x1.a39ef35793c76p-33 }; /* -1.90821492927058770002e-10 */ static private final double invln2 = 0x1.71547652b82fep0; /* 1.44269504088896338700e+00 */ static private final double P1 = 0x1.555555555553ep-3; /* 1.66666666666666019037e-01 */ static private final double P2 = -0x1.6c16c16bebd93p-9; /* -2.77777777770155933842e-03 */ static private final double P3 = 0x1.1566aaf25de2cp-14; /* 6.61375632143793436117e-05 */ static private final double P4 = -0x1.bbd41c5d26bf1p-20; /* -1.65339022054652515390e-06 */ static private final double P5 = 0x1.6376972bea4dp-25; /* 4.13813679705723846039e-08 */ /* exp(x) * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Reme algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow */ /** * Returns the exponential of its argument. * @param x The argument, a double. * @return Returns e to the power x. */ static public double exp(double x) { double y; double hi = 0; double lo = 0; double c; double t; int k = 0; int xsb; int hx; hx = __HI(x); /* high word of x */ xsb = (hx >>> 31) & 1; /* sign bit of x */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out non-finite argument */ if (hx >= 0x40862E42) { /* if |x|>=709.78... */ if (hx >= 0x7ff00000) { if (((hx & 0xfffff) | __LO(x)) != 0) { return x + x; /* NaN */ } else { return ((xsb == 0) ? x : 0.0); /* exp(+-inf)={inf,0} */ } } if (x > o_threshold) { return huge * huge; /* overflow */ } if (x < u_threshold) { return twom1000 * twom1000; /* underflow */ } } /* argument reduction */ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x - ln2HI[xsb]; lo = ln2LO[xsb]; k = 1 - xsb - xsb; } else { k = (int) ((invln2 * x) + halF[xsb]); t = k; hi = x - (t * ln2HI[0]); /* t*ln2HI is exact here */ lo = t * ln2LO[0]; } x = hi - lo; } else if (hx < 0x3e300000) { /* when |x|<2**-28 */ if ((huge + x) > one) { return one + x; /* trigger inexact */ } } else { k = 0; } /* x is now in primary range */ t = x * x; c = x - (t * (P1 + (t * (P2 + (t * (P3 + (t * (P4 + (t * P5))))))))); if (k == 0) { return one - (((x * c) / (c - 2.0)) - x); } else { y = one - ((lo - ((x * c) / (2.0 - c))) - hi); } long iy = Double.doubleToLongBits(y); if (k >= -1021) { iy += ((long) k << 52); } else { iy += ((k + 1000L) << 52); } return Double.longBitsToDouble(iy); } static private final double ln2_hi = 0x1.62e42feep-1; /* 6.93147180369123816490e-01 */ static private final double ln2_lo = 0x1.a39ef35793c76p-33; /* 1.90821492927058770002e-10 */ static private final double Lg1 = 0x1.5555555555593p-1; /* 6.666666666666735130e-01 */ static private final double Lg2 = 0x1.999999997fa04p-2; /* 3.999999999940941908e-01 */ static private final double Lg3 = 0x1.2492494229359p-2; /* 2.857142874366239149e-01 */ static private final double Lg4 = 0x1.c71c51d8e78afp-3; /* 2.222219843214978396e-01 */ static private final double Lg5 = 0x1.7466496cb03dep-3; /* 1.818357216161805012e-01 */ static private final double Lg6 = 0x1.39a09d078c69fp-3; /* 1.531383769920937332e-01 */ static private final double Lg7 = 0x1.2f112df3e5244p-3; /* 1.479819860511658591e-01 */ /* * Return the logrithm of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). */ /** * Returns the natural logarithm of its argument. * @param x The argument, a double. * @return Returns the natural (base e) logarithm of x. */ static public double log(double x) { double hfsq; double f; double s; double z; double R; double w; double t1; double t2; double dk; int k; int hx; int i; int j; int lx; hx = __HI(x); /* high word of x */ lx = __LO(x); /* low word of x */ k = 0; if (hx < 0x00100000) { /* x < 2**-1022 */ if (((hx & 0x7fffffff) | lx) == 0) { return -two54 / zero; /* log(+-0)=-inf */ } if (hx < 0) { return (x - x) / zero; /* log(-#) = NaN */ } k -= 54; x *= two54; /* subnormal number, scale up x */ hx = __HI(x); /* high word of x */ } if (hx >= 0x7ff00000) { return x + x; } k += ((hx >> 20) - 1023); hx &= 0x000fffff; i = (hx + 0x95f64) & 0x100000; x = setHI(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */ k += (i >> 20); f = x - 1.0; if ((0x000fffff & (2 + hx)) < 3) { /* |f| < 2**-20 */ if (f == zero) { if (k == 0) { return zero; } else { dk = (double) k; } return (dk * ln2_hi) + (dk * ln2_lo); } R = f * f * (0.5 - (0.33333333333333333 * f)); if (k == 0) { return f - R; } else { dk = (double) k; return (dk * ln2_hi) - ((R - (dk * ln2_lo)) - f); } } s = f / (2.0 + f); dk = (double) k; z = s * s; i = hx - 0x6147a; w = z * z; j = 0x6b851 - hx; t1 = w * (Lg2 + (w * (Lg4 + (w * Lg6)))); t2 = z * (Lg1 + (w * (Lg3 + (w * (Lg5 + (w * Lg7)))))); i |= j; R = t2 + t1; if (i > 0) { hfsq = 0.5 * f * f; if (k == 0) { return f - (hfsq - (s * (hfsq + R))); } else { return (dk * ln2_hi) - ((hfsq - ((s * (hfsq + R)) + (dk * ln2_lo))) - f); } } else { if (k == 0) { return f - (s * (f - R)); } else { return (dk * ln2_hi) - (((s * (f - R)) - (dk * ln2_lo)) - f); } } } /** * Returns the sine of its argument. * @param x The argument, a double, assumed to be in radians. * @return Returns the sine of x. */ static public double sin(double x) { double z = 0.0; int n; int ix = __HI(x); ix &= 0x7fffffff; /* |x| ~< pi/4 */ if (ix <= 0x3fe921fb) { return __kernel_sin(x, z, 0); } else if (ix >= 0x7ff00000) { /* sin(Inf or NaN) is NaN */ return x - x; } else { /* argument reduction needed */ double[] y = new double[2]; n = __ieee754_rem_pio2(x, y); switch (n & 3) { case 0: return __kernel_sin(y[0], y[1], 1); case 1: return __kernel_cos(y[0], y[1]); case 2: return -__kernel_sin(y[0], y[1], 1); default: return -__kernel_cos(y[0], y[1]); } } } static private final double S1 = -1.66666666666666324348e-01; /* 0xBFC55555, 0x55555549 */ static private final double S2 = 8.33333333332248946124e-03; /* 0x3F811111, 0x1110F8A6 */ static private final double S3 = -1.98412698298579493134e-04; /* 0xBF2A01A0, 0x19C161D5 */ static private final double S4 = 2.75573137070700676789e-06; /* 0x3EC71DE3, 0x57B1FE7D */ static private final double S5 = -2.50507602534068634195e-08; /* 0xBE5AE5E6, 0x8A2B9CEB */ static private final double S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ /* * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). * * Algorithm * 1. Since sin(-x) = -sin(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. * 3. sin(x) is approximated by a polynomial of degree 13 on * [0,pi/4] * 3 13 * sin(x) ~ x + S1*x + ... + S6*x * where * * |sin(x) 2 4 6 8 10 12 | -58 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 * | x | * * 4. sin(x+y) = sin(x) + sin'(x')*y * ~ sin(x) + (1-x*x/2)*y * For better accuracy, let * 3 2 2 2 2 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) * then 3 2 * sin(x) = x + (S1*x + (x *(r-y/2)+y)) */ static double __kernel_sin(double x, double y, int iy) { double z; double r; double v; int ix; ix = __HI(x) & 0x7fffffff; /* high word of x */ if (ix < 0x3e400000) { /* |x| < 2**-27 */ if ((int) x == 0) { return x; /* generate inexact */ } } z = x * x; v = z * x; r = S2 + (z * (S3 + (z * (S4 + (z * (S5 + (z * S6))))))); if (iy == 0) { return x + (v * (S1 + (z * r))); } else { return x - (((z * ((half * y) - (v * r))) - y) - (v * S1)); } } /** * Returns the cosine of its argument. * @param x The argument, a double, assumed to be in radians. * @return Returns the cosine of x. */ static public double cos(double x) { double z = 0.0; int n; int ix; /* High word of x. */ ix = __HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if (ix <= 0x3fe921fb) { return __kernel_cos(x, z); /* cos(Inf or NaN) is NaN */ } else if (ix >= 0x7ff00000) { return x - x; /* argument reduction needed */ } else { double[] y = new double[2]; n = __ieee754_rem_pio2(x, y); switch (n & 3) { case 0: return __kernel_cos(y[0], y[1]); case 1: return -__kernel_sin(y[0], y[1], 1); case 2: return -__kernel_cos(y[0], y[1]); default: return __kernel_sin(y[0], y[1], 1); } } } static private final double one = 0x1.0p0; /* 1.00000000000000000000e+00 */ static private final double C1 = 0x1.555555555554cp-5; /* 4.16666666666666019037e-02 */ static private final double C2 = -0x1.6c16c16c15177p-10; /* -1.38888888888741095749e-03 */ static private final double C3 = 0x1.a01a019cb159p-16; /* 2.48015872894767294178e-05 */ static private final double C4 = -0x1.27e4f809c52adp-22; /* -2.75573143513906633035e-07 */ static private final double C5 = 0x1.1ee9ebdb4b1c4p-29; /* 2.08757232129817482790e-09 */ static private final double C6 = -0x1.8fae9be8838d4p-37; /* -1.13596475577881948265e-11 */ /* * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * * Algorithm * 1. Since cos(-x) = cos(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. * 3. cos(x) is approximated by a polynomial of degree 14 on * [0,pi/4] * 4 14 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x * where the remez error is * * | 2 4 6 8 10 12 14 | -58 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 * | | * * 4 6 8 10 12 14 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then * cos(x) = 1 - x*x/2 + r * since cos(x+y) ~ cos(x) - sin(x)*y * ~ cos(x) - x*y, * a correction term is necessary in cos(x) and hence * cos(x+y) = 1 - (x*x/2 - (r - x*y)) * For better accuracy when x > 0.3, let qx = |x|/4 with * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. * Then * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). * Note that 1-qx and (x*x/2-qx) is EXACT here, and the * magnitude of the latter is at least a quarter of x*x/2, * thus, reducing the rounding error in the subtraction. */ static private double __kernel_cos(double x, double y) { double a; double hz; double z; double r; double qx = zero; int ix; ix = __HI(x) & 0x7fffffff; /* ix = |x|'s high word*/ if (ix < 0x3e400000) { /* if x < 2**27 */ if (((int) x) == 0) { return one; /* generate inexact */ } } z = x * x; r = z * (C1 + (z * (C2 + (z * (C3 + (z * (C4 + (z * (C5 + (z * C6)))))))))); if (ix < 0x3FD33333) { /* if |x| < 0.3 */ return one - ((0.5 * z) - ((z * r) - (x * y))); } else { if (ix > 0x3fe90000) { /* x > 0.78125 */ qx = 0.28125; } else { qx = set(ix - 0x00200000, 0); /* x/4 */ } hz = (0.5 * z) - qx; a = one - qx; return a - (hz - ((z * r) - (x * y))); } } /** * Returns the tangent of its argument. * @param x The argument, a double, assumed to be in radians. * @return Returns the tangent of x. */ static public double tan(double x) { double z = zero; int n; int ix = __HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if (ix <= 0x3fe921fb) { return __kernel_tan(x, z, 1); } else if (ix >= 0x7ff00000) { /* tan(Inf or NaN) is NaN */ return x - x; /* NaN */ } else { /* argument reduction needed */ double[] y = new double[2]; n = __ieee754_rem_pio2(x, y); /* 1 -- n even -1 -- n odd */ return __kernel_tan(y[0], y[1], 1 - ((n & 1) << 1)); } } static private final double pio4 = 0x1.921fb54442d18p-1; /* 7.85398163397448278999e-01 */ static private final double pio4lo = 0x1.1a62633145c07p-55; /* 3.06161699786838301793e-17 */ static private final double[] T = { 0x1.5555555555563p-2, /* 3.33333333333334091986e-01 */ 0x1.111111110fe7ap-3, /* 1.33333333333201242699e-01 */ 0x1.ba1ba1bb341fep-5, /* 5.39682539762260521377e-02 */ 0x1.664f48406d637p-6, /* 2.18694882948595424599e-02 */ 0x1.226e3e96e8493p-7, /* 8.86323982359930005737e-03 */ 0x1.d6d22c9560328p-9, /* 3.59207910759131235356e-03 */ 0x1.7dbc8fee08315p-10, /* 1.45620945432529025516e-03 */ 0x1.344d8f2f26501p-11, /* 5.88041240820264096874e-04 */ 0x1.026f71a8d1068p-12, /* 2.46463134818469906812e-04 */ 0x1.47e88a03792a6p-14, /* 7.81794442939557092300e-05 */ 0x1.2b80f32f0a7e9p-14, /* 7.14072491382608190305e-05 */ -0x1.375cbdb605373p-16, /* -1.85586374855275456654e-05 */ 0x1.b2a7074bf7ad4p-16 /* 2.59073051863633712884e-05 */ }; /* * __kernel_tan( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or * -1/tan (if k= -1) is returned. * * Algorithm * 1. Since tan(-x) = -tan(x), we need only to consider positive x. * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. * 3. tan(x) is approximated by a odd polynomial of degree 27 on * [0,0.67434] * 3 27 * tan(x) ~ x + T1*x + ... + T13*x * where * * |tan(x) 2 4 26 | -59.2 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 * | x | * * Note: tan(x+y) = tan(x) + tan'(x)*y * ~ tan(x) + (1+x*x)*y * Therefore, for better accuracy in computing tan(x+y), let * 3 2 2 2 2 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) * then * 3 2 * tan(x+y) = x + (T1*x + (x *(r+y)+y)) * * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */ static private double __kernel_tan(double x, double y, int iy) { double z; double r; double v; double w; double s; int ix; int hx; hx = __HI(x); /* high word of x */ ix = hx & 0x7fffffff; /* high word of |x| */ if (ix < 0x3e300000) { /* x < 2**-28 */ if ((int) x == 0) { /* generate inexact */ if (((ix | __LO(x)) | (iy + 1)) == 0) { return one / abs(x); } else { return (iy == 1) ? x : (-one / x); } } } if (ix >= 0x3FE59428) { /* |x|>=0.6744 */ if (hx < 0) { x = -x; y = -y; } z = pio4 - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; w = z * z; /* * Break x^5*(T[1]+x^2*T[2]+...) into * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) */ r = T[1] + (w * (T[3] + (w * (T[5] + (w * (T[7] + (w * (T[9] + (w * T[11]))))))))); v = z * (T[2] + (w * (T[4] + (w * (T[6] + (w * (T[8] + (w * (T[10] + (w * T[12])))))))))); s = z * x; r = y + (z * ((s * (r + v)) + y)); r += (T[0] * s); w = x + r; if (ix >= 0x3FE59428) { v = (double) iy; return (double) (1 - ((hx >> 30) & 2)) * (v - (2.0 * (x - (((w * w) / (w + v)) - r)))); } if (iy == 1) { return w; } else { /* if allow error up to 2 ulp, simply return -1.0/(x+r) here */ /* compute -1.0/(x+r) accurately */ double a; /* if allow error up to 2 ulp, simply return -1.0/(x+r) here */ /* compute -1.0/(x+r) accurately */ double t; z = w; z = setLO(z, 0); v = r - (z - x); /* z+v = r+x */ t = a = -1.0 / w; /* a = -1.0/w */ t = setLO(t, 0); s = 1.0 + (t * z); return t + (a * (s + (t * v))); } } static private final double pio2_hi = 0x1.921fb54442d18p0; /* 1.57079632679489655800e+00 */ static private final double pio2_lo = 0x1.1a62633145c07p-54; /* 6.12323399573676603587e-17 */ static private final double pio4_hi = 0x1.921fb54442d18p-1; /* 7.85398163397448278999e-01 */ /* coefficient for R(x^2) */ static private final double pS0 = 0x1.5555555555555p-3; /* 1.66666666666666657415e-01 */ static private final double pS1 = -0x1.4d61203eb6f7dp-2; /* -3.25565818622400915405e-01 */ static private final double pS2 = 0x1.9c1550e884455p-3; /* 2.01212532134862925881e-01 */ static private final double pS3 = -0x1.48228b5688f3bp-5; /* -4.00555345006794114027e-02 */ static private final double pS4 = 0x1.9efe07501b288p-11; /* 7.91534994289814532176e-04 */ static private final double pS5 = 0x1.23de10dfdf709p-15; /* 3.47933107596021167570e-05 */ static private final double qS1 = -0x1.33a271c8a2d4bp1; /* -2.40339491173441421878e+00 */ static private final double qS2 = 0x1.02ae59c598ac8p1; /* 2.02094576023350569471e+00 */ static private final double qS3 = -0x1.6066c1b8d0159p-1; /* -6.88283971605453293030e-01 */ static private final double qS4 = 0x1.3b8c5b12e9282p-4; /* 7.70381505559019352791e-02 */ /* * asin(x) * Method : * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... * we approximate asin(x) on [0,0.5] by * asin(x) = x + x*x^2*R(x^2) * where * R(x^2) is a rational approximation of (asin(x)-x)/x^3 * and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; * then for x>0.98 * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) * For x<=0.98, let pio4_hi = pio2_hi/2, then * f = hi part of s; * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) * and * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * */ /** * Returns the inverse (arc) sine of its argument. * @param x The argument, a double. * @return Returns the angle, in radians, whose sine is x. * It is in the range [-pi/2,pi/2]. */ static public double asin(double x) { double t = zero; double w; double p; double q; double c; double r; double s; int hx; int ix; hx = __HI(x); ix = hx & 0x7fffffff; if (ix >= 0x3ff00000) { /* |x|>= 1 */ if (((ix - 0x3ff00000) | __LO(x)) == 0) { /* asin(1)=+-pi/2 with inexact */ return (x * pio2_hi) + (x * pio2_lo); } return (x - x) / (x - x); /* asin(|x|>1) is NaN */ } else if (ix < 0x3fe00000) { /* |x|<0.5 */ if (ix < 0x3e400000) { /* if |x| < 2**-27 */ if ((huge + x) > one) { return x; /* return x with inexact if x!=0*/ } } else { t = x * x; } p = t * (pS0 + (t * (pS1 + (t * (pS2 + (t * (pS3 + (t * (pS4 + (t * pS5)))))))))); q = one + (t * (qS1 + (t * (qS2 + (t * (qS3 + (t * qS4))))))); w = p / q; return x + (x * w); } /* 1> |x|>= 0.5 */ w = one - abs(x); t = w * 0.5; p = t * (pS0 + (t * (pS1 + (t * (pS2 + (t * (pS3 + (t * (pS4 + (t * pS5)))))))))); q = one + (t * (qS1 + (t * (qS2 + (t * (qS3 + (t * qS4))))))); s = sqrt(t); if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */ w = p / q; t = pio2_hi - ((2.0 * (s + (s * w))) - pio2_lo); } else { w = s; w = setLO(w, 0); c = (t - (w * w)) / (s + w); r = p / q; p = (2.0 * s * r) - (pio2_lo - (2.0 * c)); q = pio4_hi - (2.0 * w); t = pio4_hi - (p - q); } return ((hx > 0) ? t : (-t)); } /* * Method : * acos(x) = pi/2 - asin(x) * acos(-x) = pi/2 + asin(x) * For |x|<=0.5 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) * For x>0.5 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) * = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) * = 2f + (2c + 2s*z*R(z)) * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term * for f so that f+c ~ sqrt(z). * For x<-0.5 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */ /** * Returns the inverse (arc) cosine of its argument. * @param x The argument, a double. * @return Returns the angle, in radians, whose cosine is x. * It is in the range [0,pi]. */ static public double acos(double x) { double z; double p; double q; double r; double w; double s; double c; double df; int hx; int ix; hx = __HI(x); ix = hx & 0x7fffffff; if (ix >= 0x3ff00000) { /* |x| >= 1 */ if (((ix - 0x3ff00000) | __LO(x)) == 0) { /* |x|==1 */ if (hx > 0) { return 0.0; /* acos(1) = 0 */ } else { return PI + (2.0 * pio2_lo); /* acos(-1)= pi */ } } return (x - x) / (x - x); /* acos(|x|>1) is NaN */ } if (ix < 0x3fe00000) { /* |x| < 0.5 */ if (ix <= 0x3c600000) { return pio2_hi + pio2_lo; /*if|x|<2**-57*/ } z = x * x; p = z * (pS0 + (z * (pS1 + (z * (pS2 + (z * (pS3 + (z * (pS4 + (z * pS5)))))))))); q = one + (z * (qS1 + (z * (qS2 + (z * (qS3 + (z * qS4))))))); r = p / q; return pio2_hi - (x - (pio2_lo - (x * r))); } else if (hx < 0) { /* x < -0.5 */ z = (one + x) * 0.5; p = z * (pS0 + (z * (pS1 + (z * (pS2 + (z * (pS3 + (z * (pS4 + (z * pS5)))))))))); q = one + (z * (qS1 + (z * (qS2 + (z * (qS3 + (z * qS4))))))); s = sqrt(z); r = p / q; w = (r * s) - pio2_lo; return PI - (2.0 * (s + w)); } else { /* x > 0.5 */ z = (one - x) * 0.5; s = sqrt(z); df = s; df = setLO(df, 0); c = (z - (df * df)) / (s + df); p = z * (pS0 + (z * (pS1 + (z * (pS2 + (z * (pS3 + (z * (pS4 + (z * pS5)))))))))); q = one + (z * (qS1 + (z * (qS2 + (z * (qS3 + (z * qS4))))))); r = p / q; w = (r * s) + c; return 2.0 * (df + w); } } static private final double[] atanhi = { 0x1.dac670561bb4fp-2, /* 4.63647609000806093515e-01 atan(0.5)hi */ 0x1.921fb54442d18p-1, /* 7.85398163397448278999e-01 atan(1.0)hi */ 0x1.f730bd281f69bp-1, /* 9.82793723247329054082e-01 atan(1.5)hi */ 0x1.921fb54442d18p0 /* 1.57079632679489655800e+00 atan(inf)hi */ }; static private final double[] atanlo = { 0x1.a2b7f222f65e2p-56, /* 2.26987774529616870924e-17 atan(0.5)lo */ 0x1.1a62633145c07p-55, /* 3.06161699786838301793e-17 atan(1.0)lo */ 0x1.007887af0cbbdp-56, /* 1.39033110312309984516e-17 atan(1.5)lo */ 0x1.1a62633145c07p-54 /* 6.12323399573676603587e-17 atan(inf)lo */ }; static private final double[] aT = { 0x1.555555555550dp-2, /* 3.33333333333329318027e-01 */ -0x1.999999998ebc4p-3, /* -1.99999999998764832476e-01 */ 0x1.24924920083ffp-3, /* 1.42857142725034663711e-01 */ -0x1.c71c6fe231671p-4, /* -1.11111104054623557880e-01 */ 0x1.745cdc54c206ep-4, /* 9.09088713343650656196e-02 */ -0x1.3b0f2af749a6dp-4, /* -7.69187620504482999495e-02 */ 0x1.10d66a0d03d51p-4, /* 6.66107313738753120669e-02 */ -0x1.dde2d52defd9ap-5, /* -5.83357013379057348645e-02 */ 0x1.97b4b24760debp-5, /* 4.97687799461593236017e-02 */ -0x1.2b4442c6a6c2fp-5, /* -3.65315727442169155270e-02 */ 0x1.0ad3ae322da11p-6 /* 1.62858201153657823623e-02 */ }; /* * Method * 1. Reduce x to positive by atan(x) = -atan(-x). * 2. According to the integer k=4t+0.25 chopped, t=x, the argument * is further reduced to one of the following intervals and the * arctangent of t is evaluated by the corresponding formula: * * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ /** * Returns the inverse (arc) tangent of its argument. * @param x The argument, a double. * @return Returns the angle, in radians, whose tangent is x. * It is in the range [-pi/2,pi/2]. */ static public double atan(double x) { double w; double s1; double s2; double z; int ix; int hx; int id; hx = __HI(x); ix = hx & 0x7fffffff; if (ix >= 0x44100000) { /* if |x| >= 2^66 */ if ((ix > 0x7ff00000) || ((ix == 0x7ff00000) && (__LO(x) != 0))) { return x + x; /* NaN */ } if (hx > 0) { return atanhi[3] + atanlo[3]; } else { return -atanhi[3] - atanlo[3]; } } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ if (ix < 0x3e200000) { /* |x| < 2^-29 */ if ((huge + x) > one) { return x; /* raise inexact */ } } id = -1; } else { x = abs(x); if (ix < 0x3ff30000) { /* |x| < 1.1875 */ if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ id = 0; x = ((2.0 * x) - one) / (2.0 + x); } else { /* 11/16<=|x|< 19/16 */ id = 1; x = (x - one) / (x + one); } } else { if (ix < 0x40038000) { /* |x| < 2.4375 */ id = 2; x = (x - 1.5) / (one + (1.5 * x)); } else { /* 2.4375 <= |x| < 2^66 */ id = 3; x = -1.0 / x; } } } /* end of argument reduction */ z = x * x; w = z * z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z * (aT[0] + (w * (aT[2] + (w * (aT[4] + (w * (aT[6] + (w * (aT[8] + (w * aT[10])))))))))); s2 = w * (aT[1] + (w * (aT[3] + (w * (aT[5] + (w * (aT[7] + (w * aT[9])))))))); if (id < 0) { return x - (x * (s1 + s2)); } else { z = atanhi[id] - (((x * (s1 + s2)) - atanlo[id]) - x); return (hx < 0) ? (-z) : z; } } static private final double pi_o_4 = 0x1.921fb54442d18p-1; /* 7.8539816339744827900e-01 */ static private final double pi_o_2 = 0x1.921fb54442d18p0; /* 1.5707963267948965580e+00 */ static private final double pi_lo = 0x1.1a62633145c07p-53; /* 1.2246467991473531772e-16 */ /* * Method : * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). * 2. Reduce x to positive by (if x and y are unexceptional): * ARG (x+iy) = arctan(y/x) ... if x > 0, * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, * * Special cases: * * ATAN2((anything), NaN ) is NaN; * ATAN2(NAN , (anything) ) is NaN; * ATAN2(+-0, +(anything but NaN)) is +-0 ; * ATAN2(+-0, -(anything but NaN)) is +-pi ; * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; * ATAN2(+-INF,+INF ) is +-pi/4 ; * ATAN2(+-INF,-INF ) is +-3pi/4; * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ /** * Returns angle corresponding to a Cartesian point. * @param x The first argument, a double. * @param y The second argument, a double. * @return Returns the angle, in radians, the the line * from (0,0) to (x,y) makes with the x-axis. * It is in the range [-pi,pi]. */ static public double atan2(double y, double x) { double z; int k; int m; int hx; int hy; int ix; int iy; int lx; int ly; hx = __HI(x); ix = hx & 0x7fffffff; lx = __LO(x); hy = __HI(y); iy = hy & 0x7fffffff; ly = __LO(y); if (((ix | ((lx | -lx) >>> 31)) > 0x7ff00000) || ((iy | ((ly | -ly) >>> 31)) > 0x7ff00000)) { /* x or y is NaN */ return x + y; } if (((hx - 0x3ff00000) | lx) == 0) { return atan(y); /* x=1.0 */ } m = ((hy >> 31) & 1) | ((hx >> 30) & 2); /* 2*sign(x)+sign(y) */ /* when y = 0 */ if ((iy | ly) == 0) { switch (m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return PI + tiny; /* atan(+0,-anything) = pi */ case 3: return -PI - tiny; /* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if ((ix | lx) == 0) { return ((hy < 0) ? (-pi_o_2 - tiny) : (pi_o_2 + tiny)); } /* when x is INF */ if (ix == 0x7ff00000) { if (iy == 0x7ff00000) { switch (m) { case 0: return pi_o_4 + tiny; /* atan(+INF,+INF) */ case 1: return -pi_o_4 - tiny; /* atan(-INF,+INF) */ case 2: return (3.0 * pi_o_4) + tiny; /*atan(+INF,-INF)*/ case 3: return (-3.0 * pi_o_4) - tiny; /*atan(-INF,-INF)*/ } } else { switch (m) { case 0: return zero; /* atan(+...,+INF) */ case 1: return -zero; /* atan(-...,+INF) */ case 2: return PI + tiny; /* atan(+...,-INF) */ case 3: return -PI - tiny; /* atan(-...,-INF) */ } } } /* when y is INF */ if (iy == 0x7ff00000) { return (hy < 0) ? (-pi_o_2 - tiny) : (pi_o_2 + tiny); } /* compute y/x */ k = (iy - ix) >> 20; if (k > 60) { /* |y/x| > 2**60 */ z = pi_o_2 + (0.5 * pi_lo); } else if ((hx < 0) && (k < -60)) { /* |y|/x < -2**60 */ z = 0.0; } else { /* safe to do y/x */ z = atan(abs(y / x)); } switch (m) { case 0: return z; /* atan(+,+) */ case 1: return setHI(z, __HI(z) ^ 0x80000000); /* atan(-,+) */ case 2: return PI - (z - pi_lo); /* atan(+,-) */ default: /* case 3 */ return (z - pi_lo) - PI; /* atan(-,-) */ } } /* * kernel function: * __kernel_sin ... sine function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ /* * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi */ static private final int[] two_over_pi = { 0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62, 0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a, 0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129, 0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41, 0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8, 0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf, 0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5, 0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08, 0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3, 0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880, 0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b }; static private final int[] npio2_hw = { 0x3ff921fb, 0x400921fb, 0x4012d97c, 0x401921fb, 0x401f6a7a, 0x4022d97c, 0x4025fdbb, 0x402921fb, 0x402c463a, 0x402f6a7a, 0x4031475c, 0x4032d97c, 0x40346b9c, 0x4035fdbb, 0x40378fdb, 0x403921fb, 0x403ab41b, 0x403c463a, 0x403dd85a, 0x403f6a7a, 0x40407e4c, 0x4041475c, 0x4042106c, 0x4042d97c, 0x4043a28c, 0x40446b9c, 0x404534ac, 0x4045fdbb, 0x4046c6cb, 0x40478fdb, 0x404858eb, 0x404921fb }; static private final double zero = 0.00000000000000000000e+00; // 0x0000000000000000 static private final double half = 0x1.0p-1; /* 5.00000000000000000000e-01 */ static private final double two24 = 0x1.0p24; /* 1.67772160000000000000e+07 */ static private final double invpio2 = 0x1.45f306dc9c883p-1; /* 6.36619772367581382433e-01 53 bits of 2/pi */ static private final double pio2_1 = 0x1.921fb544p0; /* 1.57079632673412561417e+00 first 33 bit of pi/2 */ static private final double pio2_1t = 0x1.0b4611a626331p-34; /* 6.07710050650619224932e-11 pi/2 - pio2_1 */ static private final double pio2_2 = 0x1.0b4611a6p-34; /* 6.07710050630396597660e-11 second 33 bit of pi/2 */ static private final double pio2_2t = 0x1.3198a2e037073p-69; /* 2.02226624879595063154e-21 pi/2 - (pio2_1+pio2_2) */ static private final double pio2_3 = 0x1.3198a2ep-69; /* 2.02226624871116645580e-21 third 33 bit of pi/2 */ static private final double pio2_3t = 0x1.b839a252049c1p-104; /* 8.47842766036889956997e-32 pi/2 - (pio2_1+pio2_2+pio2_3) */ /* * Return the remainder of x % pi/2 in y[0]+y[1] */ static private int __ieee754_rem_pio2(double x, double[] y) { double z = zero; double w; double t; double r; double fn; int i; int j; int nx; int n; int ix; int hx; hx = __HI(x); /* high word of x */ ix = hx & 0x7fffffff; if (ix <= 0x3fe921fb) { /* |x| ~<= pi/4 , no need for reduction */ y[0] = x; y[1] = 0; return 0; } if (ix < 0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ if (hx > 0) { z = x - pio2_1; if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = z - pio2_1t; y[1] = (z - y[0]) - pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z -= pio2_2; y[0] = z - pio2_2t; y[1] = (z - y[0]) - pio2_2t; } return 1; } else { /* negative x */ z = x + pio2_1; if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = z + pio2_1t; y[1] = (z - y[0]) + pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z += pio2_2; y[0] = z + pio2_2t; y[1] = (z - y[0]) + pio2_2t; } return -1; } } if (ix <= 0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ t = abs(x); n = (int) ((t * invpio2) + half); fn = (double) n; r = t - (fn * pio2_1); w = fn * pio2_1t; /* 1st round good to 85 bit */ if ((n < 32) && (ix != npio2_hw[n - 1])) { y[0] = r - w; /* quick check no cancellation */ } else { j = ix >> 20; y[0] = r - w; i = j - (((__HI(y[0])) >> 20) & 0x7ff); if (i > 16) { /* 2nd iteration needed, good to 118 */ t = r; w = fn * pio2_2; r = t - w; w = (fn * pio2_2t) - ((t - r) - w); y[0] = r - w; i = j - (((__HI(y[0])) >> 20) & 0x7ff); if (i > 49) { /* 3rd iteration need, 151 bits acc */ t = r; /* will cover all possible cases */ w = fn * pio2_3; r = t - w; w = (fn * pio2_3t) - ((t - r) - w); y[0] = r - w; } } } y[1] = (r - y[0]) - w; if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } else { return n; } } /* * all other (large) arguments */ if (ix >= 0x7ff00000) { /* x is inf or NaN */ y[0] = y[1] = x - x; return 0; } /* set z = scalbn(|x|,ilogb(x)-23) */ double[] tx = new double[3]; long lx = Double.doubleToLongBits(x); long exp = (0x7ff0000000000000L & lx) >> 52; exp -= 1046; lx -= (exp << 52); lx &= 0x7fffffffffffffffL; z = Double.longBitsToDouble(lx); for (i = 0; i < 2; i++) { tx[i] = (double) ((int) (z)); z = (z - tx[i]) * two24; } tx[2] = z; nx = 3; while (tx[nx - 1] == zero) nx--; /* skip zero term */ n = __kernel_rem_pio2(tx, y, (int) exp, nx); //System.out.println("KERNEL"); //System.out.println("tx "+tx[0]+" "+tx[1]+" "+tx[2]); //System.out.println("y "+y[0]+" "+y[1]); //System.out.println("exp "+(int)exp+" nx "+nx+" n "+n); if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } return n; } /* * __kernel_rem_pio2(x,y,e0,nx) * double x[],y[]; int e0,nx; int two_over_pi[]; * * __kernel_rem_pio2 return the last three digits of N with * y = x - N*pi/2 * so that |y| < pi/2. * * The method is to compute the integer (mod 8) and fraction parts of * (2/pi)*x without doing the full multiplication. In general we * skip the part of the product that are known to be a huge integer * (more accurately, = 0 mod 8 ). Thus the number of operations are * independent of the exponent of the input. * * (2/pi) is represented by an array of 24-bit integers in two_over_pi[]. * * Input parameters: * x[] The input value (must be positive) is broken into nx * pieces of 24-bit integers in double precision format. * x[i] will be the i-th 24 bit of x. The scaled exponent * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 * match x's up to 24 bits. * * Example of breaking a double positive z into x[0]+x[1]+x[2]: * e0 = ilogb(z)-23 * z = scalbn(z,-e0) * for i = 0,1,2 * x[i] = floor(z) * z = (z-x[i])*2**24 * * * y[] ouput result in an array of double precision numbers. * The dimension of y[] is: * 24-bit precision 1 * 53-bit precision 2 * 64-bit precision 2 * 113-bit precision 3 * The actual value is the sum of them. Thus for 113-bit * precison, one may have to do something like: * * long double t,w,r_head, r_tail; * t = (long double)y[2] + (long double)y[1]; * w = (long double)y[0]; * r_head = t+w; * r_tail = w - (r_head - t); * * e0 The exponent of x[0] * * nx dimension of x[] * * prec an integer indicating the precision: * 0 24 bits (single) * 1 53 bits (double) * 2 64 bits (extended) * 3 113 bits (quad) * * two_over_pi[] * integer array, contains the (24*i)-th to (24*i+23)-th * bit of 2/pi after binary point. The corresponding * floating value is * * two_over_pi[i] * 2^(-24(i+1)). * * External function: * double scalbn(), floor(); * * * Here is the description of some local variables: * * jk jk+1 is the initial number of terms of two_over_pi[] needed * in the computation. The recommended value is 2,3,4, * 6 for single, double, extended,and quad. * * jz local integer variable indicating the number of * terms of two_over_pi[] used. * * jx nx - 1 * * jv index for pointing to the suitable two_over_pi[] for the * computation. In general, we want * ( 2^e0*x[0] * two_over_pi[jv-1]*2^(-24jv) )/8 * is an integer. Thus * e0-3-24*jv >= 0 or (e0-3)/24 >= jv * Hence jv = max(0,(e0-3)/24). * * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. * * q[] double array with integral value, representing the * 24-bits chunk of the product of x and 2/pi. * * q0 the corresponding exponent of q[0]. Note that the * exponent for q[i] would be q0-24*i. * * PIo2[] double precision array, obtained by cutting pi/2 * into 24 bits chunks. * * f[] two_over_pi[] in floating point * * iq[] integer array by breaking up q[] in 24-bits chunk. * * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] * * ih integer. If >0 it indicates q[] is >= 0.5, hence * it also indicates the *sign* of the result. * */ /* * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static final private double[] PIo2 = { 0x1.921fb4p0, /* 1.57079625129699707031e+00 */ 0x1.4442dp-24, /* 7.54978941586159635335e-08 */ 0x1.846988p-48, /* 5.39030252995776476554e-15 */ 0x1.8cc516p-72, /* 3.28200341580791294123e-22 */ 0x1.01b838p-96, /* 1.27065575308067607349e-29 */ 0x1.a25204p-120, /* 1.22933308981111328932e-36 */ 0x1.382228p-145, /* 2.73370053816464559624e-44 */ 0x1.9f31dp-169 /* 2.16741683877804819444e-51 */ }; static final private double twon24 = 0x1.0p-24; /* 5.96046447753906250000e-08 */ static private int __kernel_rem_pio2(double[] x, double[] y, int e0, int nx) { int jz; int jx; int jv; int jp; int jk; int carry; int n; int i; int j; int k; int m; int q0; int ih; double z; double fw; double[] f = new double[20]; double[] q = new double[20]; double[] fq = new double[20]; int[] iq = new int[20]; /* initialize jk*/ jk = 4; jp = jk; /* determine jx,jv,q0, note that 3>q0 */ jx = nx - 1; jv = (e0 - 3) / 24; if (jv < 0) { jv = 0; } q0 = e0 - (24 * (jv + 1)); /* set up f[0] to f[jx+jk] where f[jx+jk] = two_over_pi[jv+jk] */ j = jv - jx; m = jx + jk; for (i = 0; i <= m; i++, j++) f[i] = ((j < 0) ? zero : (double) two_over_pi[j]); /* compute q[0],q[1],...q[jk] */ for (i = 0; i <= jk; i++) { for (j = 0, fw = 0.0; j <= jx; j++) fw += (x[j] * f[(jx + i) - j]); q[i] = fw; } jz = jk; while (true) { // recompute: /* distill q[] into iq[] reversingly */ for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { fw = (double) ((int) (twon24 * z)); iq[i] = (int) (z - (two24 * fw)); z = q[j - 1] + fw; } /* compute n */ z = scalbn(z, q0); /* actual value of z */ z -= (8.0 * floor(z * 0.125)); /* trim off integer >= 8 */ n = (int) z; z -= (double) n; ih = 0; if (q0 > 0) { /* need iq[jz-1] to determine n */ i = (iq[jz - 1] >> (24 - q0)); n += i; iq[jz - 1] -= (i << (24 - q0)); ih = iq[jz - 1] >> (23 - q0); } else if (q0 == 0) { ih = iq[jz - 1] >> 23; } else if (z >= 0.5) { ih = 2; } if (ih > 0) { /* q > 0.5 */ n += 1; carry = 0; for (i = 0; i < jz; i++) { /* compute 1-q */ j = iq[i]; if (carry == 0) { if (j != 0) { carry = 1; iq[i] = 0x1000000 - j; } } else { iq[i] = 0xffffff - j; } } if (q0 > 0) { /* rare case: chance is 1 in 12 */ switch (q0) { case 1: iq[jz - 1] &= 0x7fffff; break; case 2: iq[jz - 1] &= 0x3fffff; break; } } if (ih == 2) { z = one - z; if (carry != 0) { z -= scalbn(one, q0); } } } /* check if recomputation is needed */ if (z == zero) { j = 0; for (i = jz - 1; i >= jk; i--) j |= iq[i]; if (j == 0) { /* need recomputation */ for (k = 1; iq[jk - k] == 0; k++) ; /* k = no. of terms needed */for (i = jz + 1; i <= (jz + k); i++) { /* add q[jz+1] to q[jz+k] */ f[jx + i] = (double) two_over_pi[jv + i]; for (j = 0, fw = 0.0; j <= jx; j++) fw += (x[j] * f[(jx + i) - j]); q[i] = fw; } jz += k; continue; //goto recompute; } } break; } /* chop off zero terms */ if (z == 0.0) { jz--; q0 -= 24; while (iq[jz] == 0) { jz--; q0 -= 24; } } else { /* break z into 24-bit if necessary */ z = scalbn(z, -q0); if (z >= two24) { fw = (double) ((int) (twon24 * z)); iq[jz] = (int) (z - (two24 * fw)); jz++; q0 += 24; iq[jz] = (int) fw; } else { iq[jz] = (int) z; } } /* convert integer "bit" chunk to floating-point value */ fw = scalbn(one, q0); for (i = jz; i >= 0; i--) { q[i] = fw * (double) iq[i]; fw *= twon24; } /* compute PIo2[0,...,jp]*q[jz,...,0] */ for (i = jz; i >= 0; i--) { for (fw = 0.0, k = 0; (k <= jp) && (k <= (jz - i)); k++) fw += (PIo2[k] * q[i + k]); fq[jz - i] = fw; } /* compress fq[] into y[] */ fw = 0.0; for (i = jz; i >= 0; i--) fw += fq[i]; y[0] = (ih == 0) ? fw : (-fw); fw = fq[0] - fw; for (i = 1; i <= jz; i++) fw += fq[i]; y[1] = ((ih == 0) ? fw : (-fw)); return n & 7; } static final private double[] bp = { 1.0, 1.5, }; static final private double[] dp_h = { 0.0, 0x1.2b8034p-1 }; /* 5.84962487220764160156e-01 */ static final private double[] dp_l = { 0.0, 0x1.cfdeb43cfd006p-27 }; /* 1.35003920212974897128e-08 */ static final private double two53 = 0x1.0p53; /* 9007199254740992.0 */ /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ static final private double L1 = 0x1.3333333333303p-1; /* 5.99999999999994648725e-01 */ static final private double L2 = 0x1.b6db6db6fabffp-2; /* 4.28571428578550184252e-01 */ static final private double L3 = 0x1.55555518f264dp-2; /* 3.33333329818377432918e-01 */ static final private double L4 = 0x1.17460a91d4101p-2; /* 2.72728123808534006489e-01 */ static final private double L5 = 0x1.d864a93c9db65p-3; /* 2.30660745775561754067e-01 */ static final private double L6 = 0x1.a7e284a454eefp-3; /* 2.06975017800338417784e-01 */ static final private double lg2 = 0x1.62e42fefa39efp-1; /* 6.93147180559945286227e-01 */ static final private double lg2_h = 0x1.62e43p-1; /* 6.93147182464599609375e-01 */ static final private double lg2_l = -1.90465429995776804525e-09; /* 0xbe205c610ca86c39 */ static final private double ovt = 8.0085662595372944372e-17; /* -(1024-log2(ovfl+.5ulp)) */ static final private double cp = 0x1.ec709dc3a03fdp-1; /* 9.61796693925975554329e-01 = 2/(3ln2) */ static final private double cp_h = 0x1.ec709ep-1; /* 9.61796700954437255859e-01 = (float)cp */ static final private double cp_l = -0x1.e2fe0145b01f5p-28; /* -7.02846165095275826516e-09 = tail of cp_h*/ static final private double ivln2 = 0x1.71547652b82fep0; /* 1.44269504088896338700e+00 = 1/ln2 */ static final private double ivln2_h = 0x1.715476p0; /* 1.44269502162933349609e+00 = 24b 1/ln2*/ static final private double ivln2_l = 0x1.4ae0bf85ddf44p-26; /* 1.92596299112661746887e-08 = 1/ln2 tail*/ /* * Returns x to the power y * * n * Method: Let x = 2 * (1+f) * 1. Compute and return log2(x) in two pieces: * log2(x) = w1 + w2, * where w1 has 53-24 = 29 bit trailing zeros. * 2. Perform y*log2(x) = n+y' by simulating muti-precision * arithmetic, where |y'|<=0.5. * 3. Return x**y = 2**n*exp(y'*log2) * * Special cases: * 1. (anything) ** 0 is 1 * 2. (anything) ** 1 is itself * 3. (anything) ** NAN is NAN * 4. NAN ** (anything except 0) is NAN * 5. +-(|x| > 1) ** +INF is +INF * 6. +-(|x| > 1) ** -INF is +0 * 7. +-(|x| < 1) ** +INF is +0 * 8. +-(|x| < 1) ** -INF is +INF * 9. +-1 ** +-INF is NAN * 10. +0 ** (+anything except 0, NAN) is +0 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 12. +0 ** (-anything except 0, NAN) is +INF * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 15. +INF ** (+anything except 0,NAN) is +INF * 16. +INF ** (-anything except 0,NAN) is +0 * 17. -INF ** (anything) = -0 ** (-anything) * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) * 19. (-anything except 0 and inf) ** (non-integer) is NAN * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular * pow(integer,integer) * always returns the correct integer provided it is * representable. */ /** * Returns x to the power y. * @param x The base. * @param y The exponent. * @return x to the power y. */ static public double pow(double x, double y) { double z; double ax; double z_h; double z_l; double p_h; double p_l; double y1; double t1; double t2; double r; double s; double t; double u; double v; double w; int i; int j; int k; int yisint; int n; int hx; int hy; int ix; int iy; int lx; int ly; hx = __HI(x); lx = __LO(x); hy = __HI(y); ly = __LO(y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; /* y==zero: x**0 = 1 */ if ((iy | ly) == 0) { return one; } /* +-NaN return x+y */ if ((ix > 0x7ff00000) || ((ix == 0x7ff00000) && (lx != 0)) || (iy > 0x7ff00000) || ((iy == 0x7ff00000) && (ly != 0))) { return x + y; } /* determine if y is an odd int when x < 0 * yisint = 0 ... y is not an integer * yisint = 1 ... y is an odd int * yisint = 2 ... y is an even int */ yisint = 0; if (hx < 0) { if (iy >= 0x43400000) { yisint = 2; /* even integer y */ } else if (iy >= 0x3ff00000) { k = (iy >> 20) - 0x3ff; /* exponent */ if (k > 20) { j = ly >>> (52 - k); if ((j << (52 - k)) == ly) { yisint = 2 - (j & 1); } } else if (ly == 0) { j = iy >> (20 - k); if ((j << (20 - k)) == iy) { yisint = 2 - (j & 1); } } } } /* special value of y */ if (ly == 0) { if (iy == 0x7ff00000) { /* y is +-inf */ if (((ix - 0x3ff00000) | lx) == 0) { return y - y; /* inf**+-1 is NaN */ } else if (ix >= 0x3ff00000) { /* (|x|>1)**+-inf = inf,0 */ return (hy >= 0) ? y : zero; } else { /* (|x|<1)**-,+inf = inf,0 */ return (hy < 0) ? (-y) : zero; } } if (iy == 0x3ff00000) { /* y is +-1 */ if (hy < 0) { return one / x; } else { return x; } } if (hy == 0x40000000) { return x * x; /* y is 2 */ } if (hy == 0x3fe00000) { /* y is 0.5 */ if (hx >= 0) { /* x >= +0 */ return sqrt(x); } } } ax = abs(x); /* special value of x */ if (lx == 0) { if ((ix == 0x7ff00000) || (ix == 0) || (ix == 0x3ff00000)) { z = ax; /*x is +-0,+-inf,+-1*/ if (hy < 0) { z = one / z; /* z = (1/|x|) */ } if (hx < 0) { if (((ix - 0x3ff00000) | yisint) == 0) { z = (z - z) / (z - z); /* (-1)**non-int is NaN */ } else if (yisint == 1) { z = -z; /* (x<0)**odd = -(|x|**odd) */ } } return z; } } /* (x<0)**(non-int) is NaN */ if ((((hx >> 31) + 1) | yisint) == 0) { return (x - x) / (x - x); } /* |y| is huge */ if (iy > 0x41e00000) { /* if |y| > 2**31 */ if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */ if (ix <= 0x3fefffff) { return ((hy < 0) ? (huge * huge) : (tiny * tiny)); } if (ix >= 0x3ff00000) { return ((hy > 0) ? (huge * huge) : (tiny * tiny)); } } /* over/underflow if x is not close to one */ if (ix < 0x3fefffff) { return ((hy < 0) ? (huge * huge) : (tiny * tiny)); } if (ix > 0x3ff00000) { return ((hy > 0) ? (huge * huge) : (tiny * tiny)); } /* now |1-x| is tiny <= 2**-20, suffice to compute log(x) by x-x^2/2+x^3/3-x^4/4 */ t = x - 1; /* t has 20 trailing zeros */ w = (t * t) * (0.5 - (t * (0.3333333333333333333333 - (t * 0.25)))); u = ivln2_h * t; /* ivln2_h has 21 sig. bits */ v = (t * ivln2_l) - (w * ivln2); t1 = u + v; t1 = setLO(t1, 0); t2 = v - (t1 - u); } else { double s2; double s_h; double s_l; double t_h; double t_l; n = 0; /* take care subnormal number */ if (ix < 0x00100000) { ax *= two53; n -= 53; ix = __HI(ax); } n += (((ix) >> 20) - 0x3ff); j = ix & 0x000fffff; /* determine interval */ ix = j | 0x3ff00000; /* normalize ix */ if (j <= 0x3988E) { k = 0; /* |x|<sqrt(3/2) */ } else if (j < 0xBB67A) { k = 1; /* |x|<sqrt(3) */ } else { k = 0; n += 1; ix -= 0x00100000; } ax = setHI(ax, ix); /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ v = one / (ax + bp[k]); s = u * v; s_h = s; s_h = setLO(s_h, 0); /* t_h=ax+bp[k] High */ t_h = zero; t_h = setHI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)); t_l = ax - (t_h - bp[k]); s_l = v * ((u - (s_h * t_h)) - (s_h * t_l)); /* compute log(ax) */ s2 = s * s; r = s2 * s2 * (L1 + (s2 * (L2 + (s2 * (L3 + (s2 * (L4 + (s2 * (L5 + (s2 * L6)))))))))); r += (s_l * (s_h + s)); s2 = s_h * s_h; t_h = 3.0 + s2 + r; t_h = setLO(t_h, 0); t_l = r - ((t_h - 3.0) - s2); /* u+v = s*(1+...) */ u = s_h * t_h; v = (s_l * t_h) + (t_l * s); /* 2/(3log2)*(s+...) */ p_h = u + v; p_h = setLO(p_h, 0); p_l = v - (p_h - u); z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ z_l = (cp_l * p_h) + (p_l * cp) + dp_l[k]; /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ t = (double) n; t1 = (((z_h + z_l) + dp_h[k]) + t); t1 = setLO(t1, 0); t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); } s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ if ((((hx >> 31) + 1) | (yisint - 1)) == 0) { s = -one; /* (-ve)**(odd int) */ } /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ y1 = y; y1 = setLO(y1, 0); p_l = ((y - y1) * t1) + (y * t2); p_h = y1 * t1; z = p_l + p_h; j = __HI(z); i = __LO(z); if (j >= 0x40900000) { /* z >= 1024 */ if (((j - 0x40900000) | i) != 0) { /* if z > 1024 */ return s * huge * huge; /* overflow */ } else { if ((p_l + ovt) > (z - p_h)) { return s * huge * huge; /* overflow */ } } } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ if (((j - 0xc090cc00) | i) != 0) { /* z < -1075 */ return s * tiny * tiny; /* underflow */ } else { if (p_l <= (z - p_h)) { return s * tiny * tiny; /* underflow */ } } } /* * compute 2**(p_h+p_l) */ i = j & 0x7fffffff; k = (i >> 20) - 0x3ff; n = 0; if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ t = zero; t = setHI(t, (n & ~(0x000fffff >> k))); n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if (j < 0) { n = -n; } p_h -= t; } t = p_l + p_h; t = setLO(t, 0); u = t * lg2_h; v = ((p_l - (t - p_h)) * lg2) + (t * lg2_l); z = u + v; w = v - (z - u); t = z * z; t1 = z - (t * (P1 + (t * (P2 + (t * (P3 + (t * (P4 + (t * P5))))))))); r = ((z * t1) / (t1 - 2.0)) - (w + (z * w)); z = one - (r - z); j = __HI(z); j += (n << 20); if ((j >> 20) <= 0) { z = scalbn(z, n); /* subnormal output */ } else { i = __HI(z); i += (n << 20); z = setHI(z, i); } return s * z; } /* * copysign(double x, double y) * copysign(x,y) returns a value with the magnitude of x and * with the sign bit of y. */ static private double copysign(double x, double y) { long ix = Double.doubleToRawLongBits(x); long iy = Double.doubleToRawLongBits(y); ix = (0x7fffffffffffffffL & ix) | (0x8000000000000000L & iy); return Double.longBitsToDouble(ix); } static private final double two54 = 0x1.0p54; /* 1.80143985094819840000e+16 */ static private final double twom54 = 0x1.0p-54; /* 5.55111512312578270212e-17 */ /* * scalbn (double x, int n) * scalbn(x,n) returns x* 2**n computed by exponent * manipulation rather than by actually performing an * exponentiation or a multiplication. */ static private double scalbn(double x, int n) { int k; int hx; int lx; hx = __HI(x); lx = __LO(x); k = (hx & 0x7ff00000) >> 20; /* extract exponent */ if (k == 0) { /* 0 or subnormal x */ if ((lx | (hx & 0x7fffffff)) == 0) { return x; /* +-0 */ } x *= two54; hx = __HI(x); k = ((hx & 0x7ff00000) >> 20) - 54; if (n < -50000) { return tiny * x; /*underflow*/ } } if (k == 0x7ff) { return x + x; /* NaN or Inf */ } k = k + n; if (k > 0x7fe) { return huge * copysign(huge, x); /* overflow */ } if (k > 0) { /* normal result */ return setHI(x, (hx & 0x800fffff) | (k << 20)); } if (k <= -54) { if (n > 50000) { /* in case integer overflow in n+k */ return huge * copysign(huge, x); /*overflow*/ } } else { return tiny * copysign(tiny, x); /*underflow*/ } k += 54; /* subnormal result */ return twom54 * setHI(x, (hx & 0x800fffff) | (k << 20)); } static private double set(int newHiPart, int newLowPart) { return Double.longBitsToDouble((((long) newHiPart) << 32) | newLowPart); } static private double setLO(double x, int newLowPart) { long lx = Double.doubleToRawLongBits(x); lx &= 0xFFFFFFFF00000000L; lx |= newLowPart; return Double.longBitsToDouble(lx); } static private double setHI(double x, int newHiPart) { long lx = Double.doubleToRawLongBits(x); lx &= 0x00000000FFFFFFFFL; lx |= (((long) newHiPart) << 32); return Double.longBitsToDouble(lx); } static private int __HI(double x) { return (int) (0xFFFFFFFF & (Double.doubleToRawLongBits(x) >> 32)); } static private int __LO(double x) { return (int) (0xFFFFFFFF & Double.doubleToRawLongBits(x)); } }