/* Sha256Crypt.java Created: 18 December 2007 Java Port By: James Ratcliff, falazar@arlut.utexas.edu This class implements the new generation, scalable, SHA256-based Unix 'crypt' algorithm developed by a group of engineers from Red Hat, Sun, IBM, and HP for common use in the Unix and Linux /etc/shadow files. The Linux glibc library (starting at version 2.7) includes support for validating passwords hashed using this algorithm. The algorithm itself was released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. A discussion of the rationale and development of this algorithm is at http://people.redhat.com/drepper/sha-crypt.html and the specification and a sample C language implementation is at http://people.redhat.com/drepper/SHA-crypt.txt This Java Port is Copyright (c) 2008-2013 The University of Texas at Austin. All rights reserved. Redistribution and use in source and binary form are permitted provided that distributions retain this entire copyright notice and comment. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ package arlut.csd.crypto; import java.nio.charset.Charset; import java.security.MessageDigest; /*------------------------------------------------------------------------------ class Sha256Crypt ------------------------------------------------------------------------------*/ /** * <p>This class defines a method, {@link * Sha256Crypt#Sha256_crypt(java.lang.String, java.lang.String, int) * Sha256_crypt()}, which takes a password and a salt string and * generates a Sha256 encrypted password entry.</p> * * <p>This class implements the new generation, scalable, SHA256-based * Unix 'crypt' algorithm developed by a group of engineers from Red * Hat, Sun, IBM, and HP for common use in the Unix and Linux * /etc/shadow files.</p> * * <p>The Linux glibc library (starting at version 2.7) includes * support for validating passwords hashed using this algorithm.</p> * * <p>The algorithm itself was released into the Public Domain by * Ulrich Drepper <drepper@redhat.com>. A discussion of the * rationale and development of this algorithm is at</p> * * <p>http://people.redhat.com/drepper/sha-crypt.html</p> * * <p>and the specification and a sample C language implementation is * at</p> * * <p>http://people.redhat.com/drepper/SHA-crypt.txt</p> */ public final class Sha256Crypt { static private final String sha256_salt_prefix = "$5$"; static private final String sha256_rounds_prefix = "rounds="; static private final int SALT_LEN_MAX = 16; static private final int ROUNDS_DEFAULT = 5000; static private final int ROUNDS_MIN = 1000; static private final int ROUNDS_MAX = 999999999; static private final String SALTCHARS = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"; static private final String itoa64 = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; static private Charset UTF8() { return Charset.forName("UTF-8"); } static private MessageDigest getSHA256() { try { return MessageDigest.getInstance("SHA-256"); } catch (java.security.NoSuchAlgorithmException ex) { throw new RuntimeException(ex); } } /** * <p>This method actually generates an Sha256 crypted password hash * from a plaintext password and a salt.</p> * * <p>The resulting string will be in the form * '$5$<rounds=n>$<salt>$<hashed mess></p> * * @param keyStr Plaintext password * * @param saltStr An encoded salt/roundes which will be consulted to determine the salt * and round count, if not null * * @param roundsCount If this value is not 0, this many rounds will * used to generate the hash text. * * @return The Sha256 Unix Crypt hash text for the keyStr */ public static final String Sha256_crypt(String keyStr, String saltStr, int roundsCount) { MessageDigest ctx = getSHA256(); MessageDigest alt_ctx = getSHA256(); byte[] alt_result; byte[] temp_result; byte[] p_bytes = null; byte[] s_bytes = null; int cnt, cnt2; int rounds = ROUNDS_DEFAULT; // Default number of rounds. StringBuilder buffer; boolean include_round_count = false; /* -- */ if (saltStr != null) { if (saltStr.startsWith(sha256_salt_prefix)) { saltStr = saltStr.substring(sha256_salt_prefix.length()); } if (saltStr.startsWith(sha256_rounds_prefix)) { String num = saltStr.substring(sha256_rounds_prefix.length(), saltStr.indexOf('$')); int srounds = Integer.parseInt(num); saltStr = saltStr.substring(saltStr.indexOf('$')+1); rounds = Math.max(ROUNDS_MIN, Math.min(srounds, ROUNDS_MAX)); include_round_count = true; } if (saltStr.length() > SALT_LEN_MAX) { saltStr = saltStr.substring(0, SALT_LEN_MAX); } // gnu libc's crypt(3) implementation allows the salt to end // in $ which is then ignored. if (saltStr.endsWith("$")) { saltStr = saltStr.substring(0, saltStr.length() - 1); } else { if (saltStr.indexOf("$") != -1) { saltStr = saltStr.substring(0, saltStr.indexOf("$")); } } } else { java.util.Random randgen = new java.util.Random(); StringBuilder saltBuf = new StringBuilder(); while (saltBuf.length() < 16) { int index = (int) (randgen.nextFloat() * SALTCHARS.length()); saltBuf.append(SALTCHARS.substring(index, index+1)); } saltStr = saltBuf.toString(); } if (roundsCount != 0) { rounds = Math.max(ROUNDS_MIN, Math.min(roundsCount, ROUNDS_MAX)); } byte[] key = keyStr.getBytes(UTF8()); byte[] salt = saltStr.getBytes(UTF8()); ctx.reset(); ctx.update(key, 0, key.length); ctx.update(salt, 0, salt.length); alt_ctx.reset(); alt_ctx.update(key, 0, key.length); alt_ctx.update(salt, 0, salt.length); alt_ctx.update(key, 0, key.length); alt_result = alt_ctx.digest(); for (cnt = key.length; cnt > 32; cnt -= 32) { ctx.update(alt_result, 0, 32); } ctx.update(alt_result, 0, cnt); for (cnt = key.length; cnt > 0; cnt >>= 1) { if ((cnt & 1) != 0) { ctx.update(alt_result, 0, 32); } else { ctx.update(key, 0, key.length); } } alt_result = ctx.digest(); alt_ctx.reset(); for (cnt = 0; cnt < key.length; ++cnt) { alt_ctx.update(key, 0, key.length); } temp_result = alt_ctx.digest(); p_bytes = new byte[key.length]; for (cnt2 = 0, cnt = p_bytes.length; cnt >= 32; cnt -= 32) { System.arraycopy(temp_result, 0, p_bytes, cnt2, 32); cnt2 += 32; } System.arraycopy(temp_result, 0, p_bytes, cnt2, cnt); alt_ctx.reset(); for (cnt = 0; cnt < 16 + (alt_result[0]&0xFF); ++cnt) { alt_ctx.update(salt, 0, salt.length); } temp_result = alt_ctx.digest(); s_bytes = new byte[salt.length]; for (cnt2 = 0, cnt = s_bytes.length; cnt >= 32; cnt -= 32) { System.arraycopy(temp_result, 0, s_bytes, cnt2, 32); cnt2 += 32; } System.arraycopy(temp_result, 0, s_bytes, cnt2, cnt); /* Repeatedly run the collected hash value through SHA256 to burn CPU cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { ctx.reset(); if ((cnt & 1) != 0) { ctx.update(p_bytes, 0, key.length); } else { ctx.update (alt_result, 0, 32); } if (cnt % 3 != 0) { ctx.update(s_bytes, 0, salt.length); } if (cnt % 7 != 0) { ctx.update(p_bytes, 0, key.length); } if ((cnt & 1) != 0) { ctx.update(alt_result, 0, 32); } else { ctx.update(p_bytes, 0, key.length); } alt_result = ctx.digest(); } buffer = new StringBuilder(sha256_salt_prefix); if (include_round_count || rounds != ROUNDS_DEFAULT) { buffer.append(sha256_rounds_prefix); buffer.append(rounds); buffer.append("$"); } buffer.append(saltStr); buffer.append("$"); buffer.append(b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4)); buffer.append(b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4)); buffer.append(b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4)); buffer.append(b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4)); buffer.append(b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4)); buffer.append(b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4)); buffer.append(b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4)); buffer.append(b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4)); buffer.append(b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4)); buffer.append(b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4)); buffer.append(b64_from_24bit ((byte)0x00, alt_result[31], alt_result[30], 3)); /* Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps cannot get any information. */ ctx.reset(); return buffer.toString(); } private static final String b64_from_24bit(byte B2, byte B1, byte B0, int size) { int v = ((((int) B2) & 0xFF) << 16) | ((((int) B1) & 0xFF) << 8) | ((int)B0 & 0xff); StringBuilder result = new StringBuilder(); while (--size >= 0) { result.append(itoa64.charAt((int) (v & 0x3f))); v >>>= 6; } return result.toString(); } /** * <p>This method tests a plaintext password against a SHA256 Unix * Crypt'ed hash and returns true if the password matches the * hash.</p> * * @param plaintextPass The plaintext password text to test. * @param sha256CryptText The hash text we're testing against. * We'll extract the salt and the round count from this String. */ public static final boolean verifyPassword(String plaintextPass, String sha256CryptText) { if (sha256CryptText.startsWith("$5$")) { return sha256CryptText.equals(Sha256_crypt(plaintextPass, sha256CryptText, 0)); } else { throw new RuntimeException("Bad sha256CryptText"); } } /** * <p>Returns true if sha256CryptText is a valid Sha256Crypt hashtext, * false if not.</p> */ public static final boolean verifyHashTextFormat(String sha256CryptText) { if (!sha256CryptText.startsWith(sha256_salt_prefix)) { return false; } sha256CryptText = sha256CryptText.substring(sha256_salt_prefix.length()); if (sha256CryptText.startsWith(sha256_rounds_prefix)) { String num = sha256CryptText.substring(sha256_rounds_prefix.length(), sha256CryptText.indexOf('$')); try { Integer.parseInt(num); } catch (NumberFormatException ex) { return false; } sha256CryptText = sha256CryptText.substring(sha256CryptText.indexOf('$')+1); } if (sha256CryptText.indexOf('$') > (SALT_LEN_MAX + 1)) { return false; } sha256CryptText = sha256CryptText.substring(sha256CryptText.indexOf('$') + 1); for (int i = 0; i < sha256CryptText.length(); i++) { if (itoa64.indexOf(sha256CryptText.charAt(i)) == -1) { return false; } } return true; } /** * <p>Validate our implementation using test data from Ulrich * Drepper's C implementation.</p> */ private static void selfTest() { String msgs[] = { "$5$saltstring", "Hello world!", "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5", "$5$rounds=10000$saltstringsaltstring", "Hello world!", "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2.opqey6IcA", "$5$rounds=5000$toolongsaltstring", "This is just a test", "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8mGRcvxa5", "$5$rounds=1400$anotherlongsaltstring", "a very much longer text to encrypt. This one even stretches over morethan one line.", "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12oP84Bnq1", "$5$rounds=77777$short", "we have a short salt string but not a short password", "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/", "$5$rounds=123456$asaltof16chars..", "a short string", "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/cZKmF/wJvD", "$5$rounds=10$roundstoolow", "the minimum number is still observed", "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL972bIC" }; System.out.println("Starting Sha256Crypt tests now..."); for (int t=0; t<(msgs.length/3); t++) { String saltPrefix = msgs[t*3]; String plainText = msgs[t*3+1]; String cryptText = msgs[t*3+2]; String result = Sha256_crypt(plainText, saltPrefix, 0); System.out.println("test " + t + " result is:" + result); System.out.println("test " + t + " should be:" + cryptText); if (result.equals(cryptText)) { System.out.println("Passed crypt well"); } else { System.out.println("Failed Crypt Badly"); } if (verifyPassword(plainText, cryptText)) { System.out.println("Passed verifyPassword well"); } else { System.out.println("Failed verifyPassword Badly"); } } } /** * Test rig */ public static void main(String arg[]) { selfTest(); } }