/* * The JTS Topology Suite is a collection of Java classes that * implement the fundamental operations required to validate a given * geo-spatial data set to a known topological specification. * * Copyright (C) 2001 Vivid Solutions * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * For more information, contact: * * Vivid Solutions * Suite #1A * 2328 Government Street * Victoria BC V8T 5G5 * Canada * * (250)385-6040 * www.vividsolutions.com */ package com.vividsolutions.jts.triangulate; import java.util.*; import com.vividsolutions.jts.geom.*; import com.vividsolutions.jts.geom.util.*; import com.vividsolutions.jts.triangulate.quadedge.*; /** * A utility class which creates Conforming Delaunay Trianglulations * from collections of points and linear constraints, and extract the resulting * triangulation edges or triangles as geometries. * * @author Martin Davis * */ public class ConformingDelaunayTriangulationBuilder { private Collection siteCoords; private Geometry constraintLines; private double tolerance = 0.0; private QuadEdgeSubdivision subdiv = null; private Map constraintVertexMap = new TreeMap(); public ConformingDelaunayTriangulationBuilder() { } /** * Sets the sites (point or vertices) which will be triangulated. * All vertices of the given geometry will be used as sites. * The site vertices do not have to contain the constraint * vertices as well; any site vertices which are * identical to a constraint vertex will be removed * from the site vertex set. * * @param geom the geometry from which the sites will be extracted. */ public void setSites(Geometry geom) { siteCoords = DelaunayTriangulationBuilder.extractUniqueCoordinates(geom); } /** * Sets the linear constraints to be conformed to. * All linear components in the input will be used as constraints. * The constraint vertices do not have to be disjoint from * the site vertices. * * @param constraintLines the lines to constraint to */ public void setConstraints(Geometry constraintLines) { this.constraintLines = constraintLines; } /** * Sets the snapping tolerance which will be used * to improved the robustness of the triangulation computation. * A tolerance of 0.0 specifies that no snapping will take place. * * @param tolerance the tolerance distance to use */ public void setTolerance(double tolerance) { this.tolerance = tolerance; } private void create() { if (subdiv != null) return; Envelope siteEnv = DelaunayTriangulationBuilder.envelope(siteCoords); List segments = new ArrayList(); if (constraintLines != null) { siteEnv.expandToInclude(constraintLines.getEnvelopeInternal()); createVertices(constraintLines); segments = createConstraintSegments(constraintLines); } List sites = createSiteVertices(siteCoords); ConformingDelaunayTriangulator cdt = new ConformingDelaunayTriangulator(sites, tolerance); cdt.setConstraints(segments, new ArrayList(constraintVertexMap.values())); cdt.formInitialDelaunay(); cdt.enforceConstraints(); subdiv = cdt.getSubdivision(); } private List createSiteVertices(Collection coords) { List verts = new ArrayList(); for (Iterator i = coords.iterator(); i.hasNext(); ) { Coordinate coord = (Coordinate) i.next(); if (constraintVertexMap.containsKey(coord)) continue; verts.add(new ConstraintVertex(coord)); } return verts; } private void createVertices(Geometry geom) { Coordinate[] coords = geom.getCoordinates(); for (int i = 0; i < coords.length; i++) { Vertex v = new ConstraintVertex(coords[i]); constraintVertexMap.put(coords[i], v); } } private static List createConstraintSegments(Geometry geom) { List lines = LinearComponentExtracter.getLines(geom); List constraintSegs = new ArrayList(); for (Iterator i = lines.iterator(); i.hasNext(); ) { LineString line = (LineString) i.next(); createConstraintSegments(line, constraintSegs); } return constraintSegs; } private static void createConstraintSegments(LineString line, List constraintSegs) { Coordinate[] coords = line.getCoordinates(); for (int i = 1; i < coords.length; i++) { constraintSegs.add(new Segment(coords[i-1], coords[i])); } } /** * Gets the QuadEdgeSubdivision which models the computed triangulation. * * @return the subdivision containing the triangulation */ public QuadEdgeSubdivision getSubdivision() { create(); return subdiv; } /** * Gets the edges of the computed triangulation as a {@link MultiLineString}. * * @param geomFact the geometry factory to use to create the output * @return the edges of the triangulation */ public Geometry getEdges(GeometryFactory geomFact) { create(); return subdiv.getEdges(geomFact); } /** * Gets the faces of the computed triangulation as a {@link GeometryCollection} * of {@link Polygon}. * * @param geomFact the geometry factory to use to create the output * @return the faces of the triangulation */ public Geometry getTriangles(GeometryFactory geomFact) { create(); return subdiv.getTriangles(geomFact); } }